Advertisement

Central European Journal of Geosciences

, Volume 5, Issue 2, pp 236–253 | Cite as

Evaluation of seismogenesis behavior in Himalayan belt using data mining tools for forecasting

  • Pushan Kumar Dutta
  • O. P. Mishra
  • Mrinal Kanti Naskar
Research Article

Abstract

In the proposed study, non-linear behavioral patterns in the seismic regime for earthquakes in the Himalayan basin have been studied using a complete, verified EQ catalogue comprised of all major events and their aftershock sequences in the Himalayan basin for the past 110 years [1900–2010]. The dataset has been analyzed to give better decision making criteria for impending earthquakes. A series of statistical tests based on multi-dimensional rigorous statistical studies, inter-event distance analyses, and statistical time analyses have been used to obtain correlation dimensions. The time intervals of earthquakes within a seismic regime have been used to train the neural network to analyze the nature of earthquake patterns in the different clusters. The results obtained from descriptive statistics show high correlation with previously conducted gravity studies and radon anomaly variation. A study of the time of recurrence of the numerical properties of the regime for 60 years from 1950 to 2010 for the Himalayan belt for analysis of significant EQ failure events has been done to find the best fit for an empirical data probability distribution. The distribution of waiting time of swarm events occurring in the Himalayan basin follows a power-law model, while independent events do not fit the power-law distribution. This suggests that probability of the occurrence of swarm events [M ⩽ 6.0] with frequent shaking may be more frequent than that of the occurrence of independent events of magnitude [M >6.0] in the Himalayan belt. We propose a three-layer feed forward neural network model to identify factors, with the actual occurrence of the maximum earthquake level M as input and target vectors in Himalayan basin area. We infer through a series of statistical results and evaluations that probabilistic forecasting of earthquakes can be achieved by finding the meta-stable cluster zones of the Himalayan clusters for the spatio-temporal distribution of earthquakes in the area.

Keywords

Himalayan belt seismic cycle seismic precursor power law model meta-stable cluster zone Neural Network Model trends variation of seismicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abumurad K.M., Al-Taminmi M., Emanation power of radon and its concentration in soil and rocks. Radiat. Measurem., J. Geophys. Res., 2001, Vol 34, pp. 423–426Google Scholar
  2. [2]
    Adelfio G., Chiodi M., De Luca L., Luzio D., Vitale M. South erntyrrhenian seismicity in spacetime-magnitude domain. Annals of Geophysics, 2005, 49(6), 1245–1257.Google Scholar
  3. [3]
    Alarifi A.S., Alarifi N.S., Earthquake magnitude prediction using Artificial neural network in northern red sea area, American Geophysical union, fall meeting, 2009.Google Scholar
  4. [4]
    Andreas V. M. H., Hopfield J., Earthquake Cycles and Neural Reverberations: Collective Oscillations in Systems with Pulse-Coupled Threshold Elements, Phys. Rev. Lett. 75, 1995, 1222–1225, DOI:10.1103/PhysRevLett.75.1222.CrossRefGoogle Scholar
  5. [5]
    Arjun C.R., Kumar A., Artificial neural network — based estimation of peak ground acceleration, ISET, 2009, 501, Vol. 46(1), pp. 19–28.Google Scholar
  6. [6]
    Benson D.A., Schumer R., Meerschaert M.M. Recurrence of extreme events with power-law inter-arrival times, GRL, 2007, 34(16): Art. No. L16404.Google Scholar
  7. [7]
    Bettinelli P.A., Avouac J.P.B., Flouzat M., Bollinger F., Ramillien G., Rajaure S., Sapkota S., Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology. Earth and Planetary Science Letters, 2008 vol 266 pp. 332–344.CrossRefGoogle Scholar
  8. [8]
    Boffetta G., Carbone V., Giuliani P., Veltri P., Vulpiani A. Power laws in solar flares: self-organized criticality or turbulence? Phys. Rev. Lett. 1999, 88, pp. 4662–4665.CrossRefGoogle Scholar
  9. [9]
    Bufe C.G., Varnes D.J. Predictive modeling of seismic cycle of the Great San Francisco Bay Region. J. Geophys Res., 1993. 98 pp. 9871–9883. doi:10.1029/93JB00357.CrossRefGoogle Scholar
  10. [10]
    Campbell K.W., Thenhaus P.C. Seismic Hazard Analysis Earthquake Engineering Handbook Edited by Wai-Fah Chen and Charles Scawthorn CRC Press Print, ISBN: 978-0-8493-0068-4 eBook ISBN: 978-1-4200-4244-3 DOI: 10.1201/9781420042443. ch. 8 pg. 2, 2003.Google Scholar
  11. [11]
    Chelidze T., Rubeis V.D., Matcharashvili T., Tosi P., Influence of strong electromagnetic discharges on the dynamics of earthquakes time distribution in the Bishkek test area (Central Asia), Annals of Geophysics, 2006, VOL. 49, pp. 4/5.Google Scholar
  12. [12]
    Chen C.C., Rundle J.B., Holliday J.R., Nanjo, K.Z., Turcotte D.L., Li S.C., Tiampo K.F., The 1999 Chichi, Taiwan, earthquake as a typical example of seismic activation and quiescence, Geophys. Res. Lett., 32(22), 2005, L22315, doi:10.1029/2005GL023991.CrossRefGoogle Scholar
  13. [13]
    Chialvo D.R. Emergent complexity: What uphillanalysis or downhill invention cannot do 2010. doi:10.1016/j.newideapsych.2007.07.013.Google Scholar
  14. [14]
    Chyi L.L., Chou C.Y., Yang F.T., Continuous Radon Measurements in Fault, Western Pacific Earth Sciences, 2001 Vol.1, No. 2, 242.Google Scholar
  15. [15]
    Clauset A., Shalizi C.R., Newman M.E.J., Power Law distribution in empirical data, 2009, arxiv.org:0706.1062v2 (physics.data-an).Google Scholar
  16. [16]
    Corral A. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes. Phys. Rev. Lett. 2004, 92, pp. 108501–108504.CrossRefGoogle Scholar
  17. [17]
    Corral Á. Dependence of earthquake recurrence times and independence of magnitudes on seismicity history Tectonophysics, 2006, 424, 177–193.CrossRefGoogle Scholar
  18. [18]
    Corral A., Christensen K., Comment on “Earthquakes De-scaled: On Waiting Time Distributions and Scaling Laws,” Phys. Rev. Lett., 2006, 96, 109801.CrossRefGoogle Scholar
  19. [19]
    Dahmen K., Ertaş D., Yehuda Ben-Zion. Gutenberg-Richter and characteristic earthquake behavior in simple mean-fieldmodelsofheterogeneous faults, Phys. Rev. E 58, 1998. 1494–1501, doi10.1103/PhysRevE.58.1494.CrossRefGoogle Scholar
  20. [20]
    Del Wayne R., Bohnenstiehl G., Tolstoy M., Smith K., Fox C.G., Dziak R.P., Time-clustering behavior of spreading-center seismicity between 15 and 35°N on the Mid-Atlantic Ridge: observations from hydroacoustic monitoring Physics of the Earth and Planetary Interiors 138, 2003, pp.147–161 doi:10.1016/S0031-9201(03)00113-4.CrossRefGoogle Scholar
  21. [21]
    Dinkelman M.G., Granath J., Bird D., Helwig J., Kumar N., Emmet P., Predicting the Brittle-Ductile (BD) Transition in Continental Crust Through Deep, Long Offset, Prestack Depth Migrated (PSDM), 2D Seismic Data* Search and Discovery Posted In: AAPG International Conference and Exhibition, Rio de Janeiro, Brazil, November 15–18, 2010.Google Scholar
  22. [22]
    Dutta P.K., Mishra O.P., Naskar M.K. A Poisson Process Hidden Markov Cellular Automata Model in Earthquake Genesis and Conflict Analysis: A Physical Approach, 2012, Journal of Seismology and Earthquake Engineering, 2012, Vol 14(2), pp. 81–90.Google Scholar
  23. [23]
    Dutta, P. K., M. K. Naskar, and O. P. Mishra. “Test of strain behavior model with Radon anomaly in earthquake prone zones.” Himalayan Geology 33.1 (2012): 23–28.Google Scholar
  24. [24]
    Eftaxias K., Athanasopoulou L., Balasis G., Kalimeri M., Nikolopoulos S., Contoyiannis Y., Kopanas J., Antonopoulos G., Nomicos C. Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagetic anomalies prior to the L’Aquila earthquake as pre-seismic ones. Part I, 2009, arXiv:0908.0686v1 (physics.geo-ph).Google Scholar
  25. [25]
    Faenza L., Hainzl S., Scherbaum F., Beauval C., Statistical analysis of the time dependent earthquake occurrence and its impact on hazard in low seismicity regions, Geophys. J. Int., 2007 171.Google Scholar
  26. [26]
    Gabrielov A., Newman W.I., Turcotte D.L., Exactly soluble hierarchical clustering model: inverse cascades, self-similarity, and scaling. Physical Review, 1999, E 60, 5293–5300.Google Scholar
  27. [27]
    Ghosh D., Deb A., Sengupta R., Patra K.K., Bera S., Pronounced soil-radon anomaly-precursor of recent EQs in India. Radiation Measurements, 2007, v. 42.Google Scholar
  28. [28]
    Gutenberg B., Richter C. Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 1944 34, 185–188.Google Scholar
  29. [29]
    Hainzl, S., G. Zöller, J. Kurths. “Self-organized criticality model for earthquakes: quiescence, foreshocks and aftershocks.” International Journal of Bifurcation and Chaos 9(12), 1999: 2249–2255.CrossRefGoogle Scholar
  30. [30]
    Hainzl, S., G. Zöller, and J. Kurths. Self-organization of spatio-temporal earthquake clusters. Nonlinear Processes in Geophysics 7(1), 2000: 21–29.CrossRefGoogle Scholar
  31. [31]
    Hainzl S., Self organization of earthquake swarms, Journal of Geodynamics, 2003, Vol 35, pp. 157–172.CrossRefGoogle Scholar
  32. [32]
    Hainzl, S., Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophysical Journal International 159(3), 2004 pp. 1090–1096.CrossRefGoogle Scholar
  33. [33]
    Kagan Y.Y. Why does theoretical physics fail to explain and predict earthquake occurrence?, In: Modeling Critical and Catastrophic Phenomena in Geoscience: A Statistical Physics Approach, Lecture Notes in Physics, 2006, 705, pp. 303–359.Google Scholar
  34. [34]
    Karagiannis T., Boudec J.Y.L., Vojnovic M., Power Law and Exponential Decay of Inter Contact Times between Mobile Devices, In: MobiCom’07, 2007, Montréal, Québec, Canada.Google Scholar
  35. [35]
    Khattri K., Wyss M., Precursory variation of seismicity rate in the Assam area, India Geology, Vol 6; no. 11; 1978, pp. 685–688; doi: 10.1130/0091-7613.CrossRefGoogle Scholar
  36. [36]
    Knopoff L., Levshina T., Kellis Borok V.J., Mattoni C., Increase long-range intermediate-magnitude earthquake activity prior to strong earthquakes in California. J Geophys Res., 1996, 101:5779–5796. doi:10.1029/95JB03730.CrossRefGoogle Scholar
  37. [37]
    Li H.C., Chen C.C., Characteristics of longterm regional seismicity before the 2008 Wen-Chuan, China, earthquake using pattern informatics and genetic algorithms, Nat. Hazards Earth Syst. Sci., 11, 1003–1009, 27th Apr, 2011, http://www.nat-hazards-earth-syst-sci.net/11/1003/2011, 2011, doi:10.5194/nhess-11-1003-2011.CrossRefGoogle Scholar
  38. [38]
    Lodi S.H., Rafeeqi S.F.A., Earthquakes-Consequencesand Response, 1996 viewed 1st March, 2011 http://www.neduet.edu.pk/Civil/consequences.pdf Google Scholar
  39. [39]
    Lua C., The degree of predictability of earthquakes in several regions of China: Statistical analysis of historical data, Journal of Asian Earth Sciences, 2005, 25, 379–385.Google Scholar
  40. [40]
    Malamuda B.D., Turcotte D. L., The applicability of power-law frequency statistics to floods, Journal of Hydrology, 2006, 322, pp. 168–180.CrossRefGoogle Scholar
  41. [41]
    Matsuzawa T., Hirose H., Shibazaki B., Obara K., Modeling short- and long-term slow slip events in the seismic cycles of large subduction earthquakes, J. Geophys. Res., 2010, 115, B12301, DOI: 10.1029/2010JB007566.CrossRefGoogle Scholar
  42. [42]
    Mega M.S., Allegrini P., Grigolini P., Latora V., Palatella L., Rapisarda A., Vinciguerra S. Power-Law Time Distribution of Large Earthquakes, Physical Review Letters, Volume 90, Number 18, 2011, DOI: 10.1103/PhysRevLett.90.188501.Google Scholar
  43. [43]
    Mitra S., Priestley K., Bhattacharyya A.K., Gaur V.K., Crustal structure and earthquake focal depths beneath northeastern India and southern Tibet, Article first published online: 4 Nov. 2004, DOI: 10.1111/j.1365-246X.2004.02470.x, Geophysical Journal International, Volume 160,Issue 1, 2005, pp. 227–248.Google Scholar
  44. [44]
    Mishra O.P. Three Dimensional Tomography of North East India and Indo Burma Region and implications on Earthquake Risks. In: National Workshop on Earthquake Risk mitigation strategy in North East India, 2011.Google Scholar
  45. [45]
    McGuire R.K. Seismic hazard and risk analysis. EQ engineering research institute (EERI) Okland California USA Monograph series, 2004.Google Scholar
  46. [46]
    Molchan G., and T. Kronrod. “Seismic interevent time: a spatial scaling and multifractality.” Pure and Applied Geophysics 164(1), 2007 pp. 75–96.CrossRefGoogle Scholar
  47. [47]
    Mukhopadhyay B., Acharyya A., Dasgupta S., Potential source zones for Himalayan Earthquakes: Constraints from spatial-temporal clusters Nat Hazards, 2010, DOI 10.1007/s11069-010-9618-2, pg 3.Google Scholar
  48. [48]
    Nath S. K., Thingbaijam K. K. S., Ghosh S. K., EQ catalogue of South Asia a generic MW scale framework, 2010, viewed 7th Feb, 2011, http://www.earthqhaz.net/sacat/, 2010.Google Scholar
  49. [49]
    Panakkat A., Adeli H., Neural network models for earthquake magnitude prediction using multiple seismicity indicators. International Journal of Neural Systems, 2007, Vol 17(1), pp. 13–33.CrossRefGoogle Scholar
  50. [50]
    Papadimitriou P.Identification of seismic precursors before large earthquakes: Decelerating and accelerating seismic patterns, J. Geophys. Res., 2008, vol: 113, B04306, doi:10.1029/2007JB005112.Google Scholar
  51. [51]
    Papazachos B.C., Karakaisis G.F., Papadimitrou E.E., Ppaioannou C.H. The regional time and magnitude predictable model and its application to the Alpine-Himalayan belt b Tectonophysics, Volume 271, Issues 3–4, 1997,15 pp. 295–323, DOI:10.1016/S0040-1951(96)00252-1.Google Scholar
  52. [52]
    Papazachos B.C., Karakaisis G.F., Scordilis E.M., Papazachos C.B., Panagiotopoulos D.G., Present patterns of decelerating-accelerating seismic strain in South Japan, J Seismol., 2010, 14:273–288, DOI 10.1007/s10950-009-9165.CrossRefGoogle Scholar
  53. [53]
    Paudyala H., Shanker D., Singh H.N., Characteristics of earthquake sequence in northern Himalayan region of South Central Tibet — Precursor search and location of potential area of future earthquake. Journal of Asian Earth Sciences, 2011, Volume 41(4–5), Pages 459–466, Validation of Earthquake Precursors-VESTO, DOI:10.1016/j.jseaes.2010.11.019.CrossRefGoogle Scholar
  54. [54]
    Ramola R.C., Prasad Y., Prasad G., Kumar S., Choubey V.M. Soil-gas radon as seismotectonic indicator in Garhwal Himalaya. Appl. Radiat. Isot., 66, 1523–1530, 2008, DOI: 10.1016/j.apradiso.2008.04.006.CrossRefGoogle Scholar
  55. [55]
    Roman D.C., Heron P., Effect of Regional Tectonic Setting on Local Fault Response to Episodes of Volcanic Activity Geology Faculty Publications. Paper 2., 2007.Google Scholar
  56. [56]
    Sarlis N. V., Skordas E. S. and Varotsos P. A., Multiplicative cascades and seismicity in natural time Phys. Rev. E 80, 022102, 2009.CrossRefGoogle Scholar
  57. [57]
    Sarlis N.V., E.S. Skordas, Varotsos P.A. Nonextensivity and natural time: The case of seismicity. Physical Review E 82.2, 2010: 021110.CrossRefGoogle Scholar
  58. [58]
    Saichev, A., Sornette D., Theory of earthquake recurrence times. Journal of Geophysical Research: Solid Earth (1978–2012), 2007, 112(B4).Google Scholar
  59. [59]
    Savage M.K. The role of fluids in earthquake generation in the 2009 Mw 6.3 L’Aquila, Italy, earthquake and its foreshocks, 2010, v. 38 no. 11 p. 1055–1056, DOI: 10.1130/focus112010.1.Google Scholar
  60. [60]
    Scholz C.H. Mechanism of seismic quiescences. Pure Appl Geophys. 26:701–718, 1998, DOI:10.1007/BF00879016.Google Scholar
  61. [61]
    Singh S., Sharma D.K., Dhar S., Randhawa S.S. Geological significance of soil gas radon: a case study of Nurpur area, district Kangra, Himachal Pradesh, India. Radiat. Meas., 2006, 41(4), 482–485.CrossRefGoogle Scholar
  62. [62]
    Sobolev G.A., Tyupkin Y.S., Low-seismicity precursors of large earthquakes in Kamchatka, Volcanology and Seismology, 1997, 18, 433–446.Google Scholar
  63. [63]
    Tiwari R.K., Lakshmi S.S., Some common and con-trasting features of EQ dynamics in major tectonic zones of Himalayas using nonlinear forecasting approach, Current Science, 2005, Vol. 88,(4).Google Scholar
  64. [64]
    Turcotte D.L., Self-organized criticality. Reports on Progress in Physics 62, 1999, 1377–1429.CrossRefGoogle Scholar
  65. [65]
    Turcotte D.L., Malamud B.D., Morein G., Newman W., An inverse-cascade model for self-organized critical behavior., Physica A 268, 1999, pp. 629–643.CrossRefGoogle Scholar
  66. [66]
    Varotsos P., Alexopoulos K., Physical properties of the variations of the electric field of the earth preceding earthquakes. II. Determination of epicenter and magnitude. Tectonophysics 110(1), 1984a, pp. 99–125.CrossRefGoogle Scholar
  67. [67]
    Varotsos, P., K. Alexopoulos., Physical properties of the variations of the electric field of the earth preceding earthquakes. Determination of epicenter and magnitude. Tectonophysics 110(1), 1984 bpp 99–125.CrossRefGoogle Scholar
  68. [68]
    Varotsos, P., Lazaridou M., Latest aspects of earthquake prediction in Greece based on seismic electric signals. Tectonophysics 188(3), 1991, pp. 321–347.CrossRefGoogle Scholar
  69. [69]
    Varotsos, P., Alexopoulos K., Lazaridou M., Latest aspects of earthquake prediction in Greece based on seismic electric signals, II. Tectonophysics 224(1), 1993, pp 1–37.CrossRefGoogle Scholar
  70. [70]
    Varotsos P. A., Sarlis N. V., Skordas E. S., Longrange correlations in the electric signals that precede rupture. Physical Review, 2002, E 66: 011902.Google Scholar
  71. [71]
    Varotsos P. A. et al., Attempt to distinguish longrange temporal correlations from the statistics of the increments by natural time analysis. Physical Review E 74.2, 2006: 021123.CrossRefGoogle Scholar
  72. [72]
    Varotsos P.A., Sarlis N. V., Skordas E. S., Remarkable changes in the distribution of the order parameter of seismicity before mainshocks EPL (Europhysics Letters), Volume 100(3), 2012a, 39002, DOI:10.1209/0295-5075/100/39002.CrossRefGoogle Scholar
  73. [73]
    Varotsos P. A., Sarlis N. V., Skordas E. S., Order parameter fluctuations in natural time and b-value variation before large earthquakes, Nat. Hazards Earth Syst. Sci., 12, 3473–3481, 2012b, DOI:10.5194/nhess-12-3473-2012.CrossRefGoogle Scholar
  74. [74]
    Varotsos P. A., N. V. Sarlis, and E. S. Skordas, “Scalespecific order parameter fluctuations of seismicity before mainshocks: Natural time and Detrended Fluctuation Analysis.” EPL (Europhysics Letters) 99(5) 2012c: 59001.CrossRefGoogle Scholar
  75. [75]
    Walia V., Virk H. S., Yang T. F., Walia M., Bajwa B.S., Radon Precursory Anomalies for Some EQs in N-W Himalaya, India, 4th Taiwan — Japan Workshop on Hydrological and Geochemical Research for EQ Prediction, 2010.Google Scholar
  76. [76]
    Weatherly D., Recurrence Interval Statistics of Cellular Automaton Seismicity Models, Pure and Applied Geophysics, Volume 163(9), 1933–1947, 2001, DOI: 10.1007/s00024-006-0105-3.CrossRefGoogle Scholar
  77. [77]
    Wilson L. (eds), “Welcome to the Himalayan Oregony” viewed 27th Feb, 2011, http://www.geo.arizona.edu/geo5xx/geo527/Himalayas/geophysics.html Google Scholar
  78. [78]
    Wyss M., Klein F., Johnston A.C., Precursors of the Kalapana M = 7.2 EQ. J. Geophys. Res. 86:1981, 3881–3900. DOI:10.1029/JB086iB05p03881.CrossRefGoogle Scholar
  79. [79]
    Wyss M., Habermann R.E., Precursory seismic quiescence. Pure Appl. Geophys. 126:319–332, 1998, DOI:10.1007/BF00879001.CrossRefGoogle Scholar
  80. [80]
    Wyss M., Wiemer S., How Can One Test the Seismic Gap Hypothesis? The Case of Repeated Ruptures in the Aleutians, Pure appl. geophys. 155, 259–278, 1999, DOI:0033-4553/99/040259-20.CrossRefGoogle Scholar
  81. [81]
    Wyss M., Dmowska R. (Eds.): Earthquake Prediction — State of the Art, 1997, 272 pp., Birkhauser Verlag.Google Scholar
  82. [82]
    Zhao W., Nelson K.D., Deep seismic reflection evidence continental under-thrusting beneath southern Tibet. Nature 366, 1993, 557–559.CrossRefGoogle Scholar
  83. [83]
    Zöller G., Hainzl S., Kurths J., Zschau J., A systematic test on precursory seismic quiescence in Armenia. Nat Hazards, 2002, 26: 245–263. DOI:10.1023/A:1015685006180.CrossRefGoogle Scholar
  84. [84]
    Zöller G., Hainzl S., Kurths J., Zschau J., Seismic quiescence as an indicator for large earthquakes in a system of self-organized criticality, Geophys. Res. Lett., 2000 Vol 27, pp. 597–600.CrossRefGoogle Scholar
  85. [85]
    Zúńiga, F. R., Stefan W., Seismicity patterns: Are they always related to natural causes?. Pure and Applied Geophysics 155(2–4), 1999: 713–726.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Pushan Kumar Dutta
    • 1
    • 2
  • O. P. Mishra
    • 3
  • Mrinal Kanti Naskar
    • 1
    • 2
  1. 1.Advanced Digital Embedded System LabJadavpur UniversityKolkataIndia
  2. 2.Electronics and Communication Dept.Jadavpur UniversityKolkataIndia
  3. 3.SAARC Disaster Management Centre [SDMC]New DelhiIndia

Personalised recommendations