Central European Journal of Geosciences

, Volume 4, Issue 3, pp 495–529 | Cite as

Middle Triassic chirotherid trackways on earthquake influenced intertidal limulid reproduction flats of the European Germanic Basin coasts

Review Article

Abstract

Chirotherid footprints of Synaptichnium, Chirotherium and Isochirotherium appeared during the late Early (Aegean) to early Late (Carnian) Triassic in central Europe. These taxa are partly revised herein, using both perfect and variably preserved tracks, and very long trackways from an upper Pelsonian intertidal-flat megatracksite of the Germanic Basin coast Pelsonian (Karlstadt Formation). The global Middle Triassic distribution of those footprints suggests seasonal migrations across Pangaea of possible archosauriform reptile trackmakers, such as Euparkeria, Ticinosuchus, Arizonasaurus and Batrachotomus, caused by horseshoe-crab mass migrations into tidal-flat beach reproductive zones in the Germanic Basin. Such seasonal migrations may even suggest a Pangaea-wide food-chain reaction, possibly including the mobilization of fish, marine and terrestrial reptiles, and of which situation the Germanic Basin intertidal-flats is a globally unique example.

Keywords

Chirotherid trackways archosauriform trackmakers intertidal megatracksite Middle Triassic horseshoe-crab reproduction zones intertidal environments migration behaviour on Pangaea and coasts 

References

  1. [1]
    Sickler F.K.J., Sendenschreiben an Dr. Blumenbach über die höchst merkwürdigen Reliefs der Fährten urweltlicher Tiere in den Hessberger Sandsteinbrüchen bei Hildburghausen. Neues Jahrbuch für Mineralogie Geologie und Paläontologie, 1835, 230–232Google Scholar
  2. [2]
    Bernhardi R., Thierfaerten bei Hildburghausen. Neues Jahrbuch für Mineralogie Geognosie und Geologie, 1834, 642–643Google Scholar
  3. [3]
    Kaup J.J., Über Tierfaehrten bei Hildburghausen. Neues Jahrbuch für Minerlaogie Geologie und Palaeontologie, 1835, 327–328Google Scholar
  4. [4]
    Humboldt von, A., Not sur les empreintes de pieds d’une quadrupede dans le grès bigarre de Hildburghausen. Annales des Sciences Naturelle de Paris B, 1835, 4, 134–138Google Scholar
  5. [5]
    Link O., Sur les traces des pieds d’animeaux inconnues a Hildburghausen. Comptes Rendues Academie de Science Paris, 1835, 1, 1–258Google Scholar
  6. [6]
    Nöggerath J., Das urweltliche Handthier von Hildburghausen. Rheinländische Provinzial Blätter Neue Folge, 1835, 4, 212–213Google Scholar
  7. [7]
    Voigt F.S., Tierfährten von Hildburghausen. Neues Jahrbuch für Mineralogie Geologie und Paläontologie, 1835, volume, 322–326Google Scholar
  8. [8]
    Wigmann A., Tierfährten im Hildburghauser Sandstein. Archiv der Naturgeschichte, 1835, 1, 395–397Google Scholar
  9. [9]
    Virlet T., Note sur les empreintes de oieds dànimeaux dans le grés bigarré des environs de Hildburghausen, es Saxe. Bulletin de la Societé Geologie France, 1836, 7, 220–224Google Scholar
  10. [10]
    Engelhardt B., Über die Formation, in welcher die Tatzenabdrücke vorweltlicher Tiere in der Nähe von Hildburghausen auftreten. Neues Jahrbuch für Geologie und Paläontologie, 1837, 379–384Google Scholar
  11. [11]
    Rühle von Lilienstein, H.,. Fährten und Spuren im Chirotheriumsandstein von Südthüringen. Fortschritte in Geologie, 1839, 40, 239–387Google Scholar
  12. [12]
    Swinton W.E., The history of Chirotherium. Geol. J., 2007, 2, 443–473CrossRefGoogle Scholar
  13. [13]
    Haubold H., Die Saurierfährten Chirotherium barthii Kaup, 1835 — das Typusmaterial aus dem Buntsandstein bei Hildburghausen/Thüringen und das “Chirotherium-Monument“. Veröffentlichungen des Naturhistorischen Museum Schleusingen, 2006, 21, 3–32Google Scholar
  14. [14]
    Koch K., Schmid E., Die Fährtenabdrücke im Bunten Sandsteine bei Jena. Hochhausen, Jena, 1841Google Scholar
  15. [15]
    Diedrich C., Die Saurierspuren-Grabung im basalen Mittleren Muschelkalk (Anis, Mitteltrias) von Bernburg (Sachsen-Anhalt). Archäologie in Sachsen-Anhalt Soderband, 2012, 15, 1–63Google Scholar
  16. [16]
    Haubold H., Saurierfährten. Neue Brehm Bücherei, Wittenberg Lutherstadt, 1984Google Scholar
  17. [17]
    Soergel W., Die Fährten der Chirotheria. Gustav Fischer, Jena, 1925Google Scholar
  18. [18]
    Demathieu G., Leitz F., Wirbeltierfährten aus dem Röt von Kronach (Trias, NO-Bayern). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie, 1982, 22, 63–89Google Scholar
  19. [19]
    Haubold H., Die Tetrapodenfährten des Buntsandsteins in der Deutschen Demokratischen Republik und in Westdeutschland und ihre Äquivalente in der gesamten Trias. Paläontologische Abhandlungen A Paläozoologie, 1971, 4, 395–548Google Scholar
  20. [20]
    Haderer F.O., Demathieu G., Böttcher R., Wirbeltier-Fährten aus dem Rötquarzit (Oberer Buntsandstein, Mittlere Trias) von Hardheim bei Wertheim/Main (Süddeutschland). Stuttgarter Beiträge zur Naturkunde, 1995, 230, 1–31Google Scholar
  21. [21]
    Egerton S., On two casts in sandstone of the impressions of the hind foot of a gigantic Chirotherium from the New Red Sandstone of Chechire. Proceedings of the Geological Society of London, 1838, 59, 14–15Google Scholar
  22. [22]
    Peabody F.E., Reptile and amphibian trackways from the Lower Triassic Moenkopi Formation of Arizona and Utah. University of California Publications in Geological Sciences, 1948, 27, 295–468Google Scholar
  23. [23]
    Gand G., Sur le matériel ichnolique récolté dans le Muschelkalk de Culles-les-Roches. Bulletin de la Societé d’ Histoire Naturelle Creusot, 1977, 35, 21–44Google Scholar
  24. [24]
    Gand G., Description de deux nouvelles traces d’Isochirotherium observées dans le grès du Trias moyen de Bourgogne. Bulletin de la Societé d’ Histoire Naturelle Creusot, 1979, 37, 13–25Google Scholar
  25. [25]
    Brandner R., Tertapodenfährten aus der unteren Mitteltrias der Südalpen. Veröffentlichungen Universität Innsbruck, 1973, 86, 57–71Google Scholar
  26. [26]
    Haubold H., Chirotherium-Fährten aus dem Buntsandstein im “Mauritianum” in Altenburg. Abhandlungen und Berichte für Natrukunde Museum Altenburg, 1969, 6, 21–36Google Scholar
  27. [27]
    Demathieu G., Archosaurier-Fährtenfaunen der Trias: Die Bedeutung ihrer Ähnlichkeiten und ihrer Verschiedenheiten; ihre mögliche Verwendung im Rahmen der Stratigraphie der Trias. Int. J. Earth Sci., 1982, 71, 741–746Google Scholar
  28. [28]
    Demathieu G., Trace fossil assemblages in Middle Triassic marginal marine deposits, eastern border of the Massif Central, France. Societé Economique Paläontologie et Mineralogie Speciale Publication, 1985, 35, 53–66Google Scholar
  29. [29]
    Thulborn R.A., Dinosaur tracks. Chapman and Hall, London — New York — Tokyo — Melbourne — Madras, 1990.CrossRefGoogle Scholar
  30. [30]
    Tresise G., ’Chirotherium herculis’ — problems posed by the first finds. Ann. Sci., 1991, 48, 565–57CrossRefGoogle Scholar
  31. [31]
    Tresise G., Sarjeant W.A.S., The tracks of Triassic vertebrates. Fossil evidence from North-West England. The Stationary Office, London, 1997Google Scholar
  32. [32]
    Karl C., Haubold H., Saurierfährten im Keuper (Obere Trias) Frankens, die Typen von Brachychirotherium. Berichte der Naturwissenschaflichen Gesellschaft Bayreuth, 2000, 24, 91–120Google Scholar
  33. [33]
    Ptaszynski T., Lower Triassic vertebrate footprints from Wióry, Holy Cross Mountains, Poland. Acta Palaeontol. Pol., 2000, 45, 151–194Google Scholar
  34. [34]
    Avanzini M., Lockley M., Middle Triassic archosaur population structure: interpretation based on Isochirotherium delicatum fossil footprints (Southern Alps, Italy). Palaeogeogr. Palaeoecol., 2002, 185, 391–402CrossRefGoogle Scholar
  35. [35]
    Avanzini M., Leonardi N., Isochirotherium inferni ichnosp. nov. in the Illyrian (Late Anisian, Middle Triassic) of Adige Valley (Bolzano, Italy). Bolletino Societa Paleontologica Italiana, 2002, 41, 41–50Google Scholar
  36. [36]
    Demathieu G.R., Demathieu P., Chirotheria and other Ichnotaxa of the European Triassic. Ichnos, 2004, 11, 79–88CrossRefGoogle Scholar
  37. [37]
    King M., Sarjeant W., Thompson D., Tresise G.A., Revised systematic ichnotaxonomy and review of the vertebrate footprint ichnofamily Chirotheriidae from the British Triassic. Ichnos, 2005, 12, 241–299CrossRefGoogle Scholar
  38. [38]
    Valdiserr D., Avanzini M.A., Tetrapod ichnoassociation from the Middle Triassic (Anisian, Pelsonian) of Northern Italy. Ichnos, 2007, 14, 105–116CrossRefGoogle Scholar
  39. [39]
    Kuleta M., Niedzwiedzki G., Krebs B., Ptaszynski T., Nowe stanowisko z tropami kregowców z górnego pstrego piaskowca Gór `Swietokrzyskich. Przeglad Geologiczny, 2005, 53, 151–155Google Scholar
  40. [40]
    Hunt A.P., Lucas S.G., The Triassic tetrapod record: ichnofaunas, ichnofacies and biochronology. New Mexico Museum of Natural History Science Bulletin, 2007, 41, 78–87Google Scholar
  41. [41]
    Niedzwiedzki G., Ptaszynski T., Large Chirotheriidae tracks in the Early Triassic of Wiory, Holy Cross Mountains, Poland. Acta Geol. Pol., 2007, 57, 325–342Google Scholar
  42. [42]
    Clark N.D.L., Corrance H., New discoveries of Isochirotherium herculis and a reassessment of chirotheriid footprints from the Triassic of the Isle of Arran, Scotland. Scot. J. Geol., 2009, 45, 69–82CrossRefGoogle Scholar
  43. [43]
    Klein H., Lucas S.G., Review of the tetrapod ichnofauna of the Moenkopi Formation/Group (Early-Middle Triassic) of the American Southwest. New Mexico Museum of Natural History and Science Bulletin, 2010, 50, 1–67Google Scholar
  44. [44]
    Gand G., De La Horra R., Galán-Abellán B., López-Gómez J., Barrenechea J.F., Arche A., Benito M.I., New ichnites from the Middle Triassic of the Iberian Ranges (Spain): palaeoenvironmental and palaeogeographical implications. Historical Biology, 2010, 22, 40–56Google Scholar
  45. [45]
    Díaz-Martínez I., Pérez-García A., Estudio de las icnitas de vertebrado triásicas de Espana. In: Pérez-García A., Gascó F., Gasulla J.M., Escaso F. (Eds.), Viajando a Mundos Pretéritos. Ayuntamiento de Morella, 2011, 111–122Google Scholar
  46. [46]
    Klein H., Haubold H., Differenzierung von ausgewählten Chirotherien der Trias mittels Landmarkanalyse. Hallesches Jahrbuch für Geowissenschaften, 2003, 25, 21–36Google Scholar
  47. [47]
    Nöggerath J., Angebliche Fährten urweltlicher Affen (Quadrumanen) in Sandsteinen. Rheinländische Provinzial Blätter Neue Folge, 1835, 4, 143–148Google Scholar
  48. [48]
    Owen R., Description of the skeleton of the genus Labyrinthodon; with remarks of the probable identity of the Chirotherium with that genus of extinct batrachians. Proceedings of the Geologisal Society of London, 1841, 3, 389–397Google Scholar
  49. [49]
    Ewer R.F., The anatomy of the thecodont reptile Euparkeria capensis Broom. Philosophical Transactions of the Royal Society London B, 1965, 248, 379–435CrossRefGoogle Scholar
  50. [50]
    Gower D.J., Sennikov A.G., Early Archosaurs from Russia. In: Benton M.J., Kurochkin E.N., Shishkin M.A., Unwin D.M. (Eds.), The Age of Dinosaurs in Russia and Mongolia: Cambridge University Press, Cambridge, 2000, 140–159Google Scholar
  51. [51]
    Nesbitt S.J., The early evolution of archosaurs: relationships and the origin of major clades. B. Am. Mus. Nat. Hist., 2011, 352, 1–292CrossRefGoogle Scholar
  52. [52]
    Irmis R.B., Evaluating hypotheses for the early diversification of dinosaurs. Earth Env. Sci. T. of R. So., 2011, 101, 397–426Google Scholar
  53. [53]
    Ebel K., Falkenstein F., Haderer F.O., Wild R., Ctenosauriscus koeneni (v. Huene) und der Rauisuchier von Waldshut — Biomechanische Deutung der Wirbelsäule und Beziehungen zu Chirotherium sickleri Kaup. Stuttgarter Beiträge zur Naturkunde B, 1998, 261, 1–18Google Scholar
  54. [54]
    Krebs B., Ticinosuchus ferox n. g. n. sp. Schweizerische Paläontologische Abhandlungen, 1965, 81, 1–141Google Scholar
  55. [55]
    Krebs B., Zur Deutung der Chirotherium-Fährten. Natur und Museum, 96(10):389–396. Avanzini, M. 2000. Synaptichnium tracks with skin impressions from the Anisian (Middle Triassic) of the Southern Alps (Val di Non, Italy). Ichnos, 1966, 7, 243–251Google Scholar
  56. [56]
    Gower D., The cranial and mandibular osteology of a new rauisuchian archosaur from the Middle Triassic of southern Germany. Stuttgarter Beiträge zur Naturkunde B, 1999, 280, 1–49Google Scholar
  57. [57]
    Hagdorn H, Muschelkalkmuseum Ingelfingen. Edition Lattner, Ingelfingen, 2004Google Scholar
  58. [58]
    Gower D.J., Schoch R.R., Postcranial Anatomy of the Rauisuchian Archosaur Batrachotomus kupferzellensis. J. Vertebr. Paleontol., 2009, 29, 103–122CrossRefGoogle Scholar
  59. [59]
    Lucas S.G., Heckert, A.B., Late Triassic aetosaurs as the trackmaker of the tetrapod footprint ichnotaxon Brachychirotherium. Ichnos, 2011, 18, 197–208CrossRefGoogle Scholar
  60. [60]
    Lucas S.G., Tetrapod footprint biostratigraphy and biochronology. Ichnos, 2007, 14, 5–38CrossRefGoogle Scholar
  61. [61]
    Demathieu G.R., Oosterink H.W., New discoveries of ichnofossils from the Middle Triassic of Winterswijk (the Netherlands). Geologie en Mijnbouw, 1988, 67, 3–17Google Scholar
  62. [62]
    Diedrich C., The palaeogeographic reconstructions of the Middle Triassic tectonical controlled carbonatic Germanic Basin of Central Europe—a northern Tethys connected cratonic marine Basin — coastal basin margin mappings by the use of reptile footprint rich intertidal and sabkha environments. 5th International Conference on the Geology of Tethys, Quena, Egypt, Abstract Book, 2010, 3–5Google Scholar
  63. [63]
    Diedrich C., Oosterink H., Bergingsen documentatietechniek van Rhynchosauroides peabodyi (Faber) — Sauriersporen op de grens Boven-Buntsandsteen/Onder Muschelkalk van Winterswijk. Grondboor and Hamer, 2000, 54, 125–130Google Scholar
  64. [64]
    Diedrich C., Die Wirbeltierfährtenfundstelle Borgholzhausen (Teutoburger Wald, NWDeutschland) aus der Oolith-Zone (Bithyn, Unterer Muschelkalk). Paläontologische Zeitschrift, 2002, 76, 35–56Google Scholar
  65. [65]
    Diedrich C., Fichter J., Eine erste Saurierfährten-Grabung im Unteren Muschelkalk (Anis, Mitteltrias) von Größenlüder, Nordhessen (NW-Deutschland). Philippia, 2003, 11, 109–132Google Scholar
  66. [66]
    Bachmann G.H., Geologie von Sachsen-Anhalt. Schweizerbart, Stuttgart, 2008Google Scholar
  67. [67]
    Schwarz U., Sedimentary structures and facies analysis of shallow marine carbonates (Lower Muschelkalk, Middle Triassic, SW-Germany). Contributions to Sedimentology, 1975, 3, 1–100Google Scholar
  68. [68]
    Kurze M., Zum Problem der Entstehung von Wellenstrifen und Querplattung im Muschelkalk. Zeitschrift der deutschen geologischen Wissenschaften, 1981, 9, 489–499Google Scholar
  69. [69]
    Knaust D., Signatures of tectonically controlled sedimentation in Lower Muschelkalk carbonates (Middle Triassic) of the Germanic Basin. Zentralblatt für Geologie und Paläontologie I, 1998, 9-10, 893–924Google Scholar
  70. [70]
    Föhlisch K., Voigt T., Synsedimentary deformation in the Lower Muschelkalk of the Germanic Basin. Special Publications of the International Association of Sedimentologists, 2001, 31, 279–297Google Scholar
  71. [71]
    Bachmann G.H., Aref M.A.M., A seismite in Triassic gypsum deposits (Grabfeld Formation, Ladinian), Southwest Germany. Sediment. Geol., 2005, 180, 75–89CrossRefGoogle Scholar
  72. [72]
    Diedrich C., Millions of reptile tracks — Early to Middle Triassic carbonate tidal flat migration bridges of Central Europe. Palaegeogr. Palaeoecol., 2008, 259, 410–423CrossRefGoogle Scholar
  73. [73]
    Diedrich C., Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements — with emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea. Global Planet. Change, 2009, 6, 27–55CrossRefGoogle Scholar
  74. [74]
    Föhlisch K., Überlieferungen seismischer Aktivität im Unteren Muschelkalk. Beiträge zur Geologie Thüringens Neue Folge, 2007, 14, 55–83Google Scholar
  75. [75]
    Diedrich C., The Middle Triassic marine reptile biodiversity in the Germanic Basin in the centre of the Pangaean world. Central European Journal of Geosciences, 2012, 4, 9–46CrossRefGoogle Scholar
  76. [76]
    Bachmann G.H., Kozur H.W., The Germanic Triassic: correlations with the international chronostratigraphic scale, numerical ages and Milankovitch cyclicity. Hallesches Jahrbuch für Geowissenschaften B, 2004, 26, 17–62Google Scholar
  77. [77]
    Kozur H.W., Bachmann G.H., Updated correlation of the Germanic Triassic with the Tethyan scale and assigned numeric ages. Berichte der Geologischen Bundesanstalt Wien, 2008, 76, 53–58Google Scholar
  78. [78]
    Aigner T., Bachmann G.H. Sequence stratigraphic framework of the German Triassic. Sediment. Geol., 1992, 80, 115–135CrossRefGoogle Scholar
  79. [79]
    Kurze M., Zum Problem der Entstehung von Wellenstrifen und Querplattung im Muschelkalk. Zeitschrift der deutschen geologischen Wissenschaften, 1981, 9, 489–499Google Scholar
  80. [80]
    Szulc J., Anisian-Carnian evolution of the Germanic Basin and its eustatic, tectonic and climate controls. Zentralblatt für Geologie und Paläontologie, 1998, 7–8, 813–852Google Scholar
  81. [81]
    Riding R., Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 2000, 4, 179–214CrossRefGoogle Scholar
  82. [82]
    Lukas V., Die Terebratel-Bänke (Unterer Muschelkalk, Trias) in Hessen — ein Abbild kurzzeitiger Faziesänderungen im westlichen Germanischen Becken. Geologisches Jahrbuch Hessen, 1991, 119, 119–175Google Scholar
  83. [83]
    Knaust D., Trace fossils and ichnofabrics on the Lower Muschelkalk carbonate ramp (Triassic) of Germany: tool for high resolution sequence stratigraphy. Geologische Rundschau, 1998, 87, 21–31CrossRefGoogle Scholar
  84. [84]
    Diedrich C., Vertebrate track bed stratigraphy of the Upper Bunter and basal Lower Muschelkalk (Middle Triassic) of Winterswijk (East Netherlands). Geologie en Mjinbouw//Netherlands Journal of Geosciences, 2001, 80, 31–39Google Scholar
  85. [85]
    Chafetz H.S., Buczynski C, Bacterially inducted lithification of microbial mats. Palaios, 1992, 7, 277–293CrossRefGoogle Scholar
  86. [86]
    Diedrich C., Actuopalaeontological trackway experiments with Iguana on intertidal flat carbonates of the Arabian Gulf — a comparison to fossil Rhynchosauroides tracks of Triassic carbonate tidal flat megatracksites in the European Germanic Basin. Senckenbergiana Maritima, 2005, 35, 203–220CrossRefGoogle Scholar
  87. [87]
    Fichter J., Aktuopaläontologische Untersuchungen an den Fährten einheimischer Urodelen und Lacertilier. Teil I: Die Morphologie der Fährten in Abhängigkeit von der Sedimentbeschaffenheit. Mainzer naturwissenschaftliches Archiv, 1982, 20, 91–129Google Scholar
  88. [88]
    Brand L.R., Variations in salamander trackways resulting from substrate differences. J. Palaeont., 1996, 70, 1004–1010Google Scholar
  89. [89]
    Haubold H., Die Saurierfährten Chirotherium barthii Kaup, 1835 — das Typusmaterial aus dem Buntsandstein bei Hildburghausen/Thüringen und das “Chirotherium-Monument”. Veröffentlichungen des Naturhistorischen Museum Schleusingen, 2006, 21, 3–32Google Scholar
  90. [90]
    Fichter J., Kunz R., New genus and species of chirotheroid tracks in the Lower Triassic (Middle Bunter, Detfurth-Folge) of Central Germany. Ichnos, 2004, 11, 183–193CrossRefGoogle Scholar
  91. [91]
    Haubold H., Klein H., The dinosauroid trackways Parachirotherium — Atreipus — Grallator from the lower Middle Keuper (Upper Triassic: Ladinian, Carnian, ? Norian) of Frankonia (Germany). Hallesches Jahrbuch für Geowissenschaften B, 2000, 22, 59–85Google Scholar
  92. [92]
    Demathieu G., Prémiers traces de reptiles archosauriens dans le Trias autochthone des Argilles Rouges (Col des Corbeaux, Vieil Em osson, Suisse). Comtes Rendues d’ Academie de Science Paris, 1977, 285, 649–652Google Scholar
  93. [93]
    Demathieu G., Haubold H., Reptilfährten aus dem Mittleren Buntsandstein von Hessen. Hallesches Jahrbuch für Geowissenschaften, 1982, 7, 97–110Google Scholar
  94. [94]
    Diedrich C., Trostheide F., Auf den Spuren der terresten Muschelkalksaurier und aquatischen Sauropterygier vom obersten Röt bis zum Mittleren Muschelkalk (Unter-/Mitteltrias) von Sachsen-Anhalt. Abhandlungen und Berichte für Naturkunde Magdeburg, 2007, 30, 5–56Google Scholar
  95. [95]
    Avanzini M., Cavin L., A new Isochirotherium trackway from the Triassic of Vieux Emosson, SW Switzerland: stratigraphic implications. Swiss J. Geosci., 2009, 102, 351–362CrossRefGoogle Scholar
  96. [96]
    Wild R., The fossil deposits of Kupferzell, southwest Germany. Mesozoic Vertebrate Life, 1980, 1, 15–18Google Scholar
  97. [97]
    Mader D., Charakteristische Fossilien des mitteleuropäischen Buntsandsteins. Naturwissenschaften, 1984, 71, 69–78CrossRefGoogle Scholar
  98. [98]
    Maubeuge P., Nouvelle découverte d’ empraintes de reptiles dans les grès du Trias inférieur de l’ Est de la France. Bulletin Academie Societé Lorraine, 1972, 11, 203–237Google Scholar
  99. [99]
    Durand M., A propos de quelques traces de pas et figures sédimentaires dans le Buntsandstein supérieur du Sud-Ouest des Vosgeses. Bulletin d’ Academie Societé Lorrain, 1975, 14, 23–25Google Scholar
  100. [100]
    Clark N.D.L., Aspen P., Corrance H., Chirotherium barthii Kaup, 1835 from the Triassic of the Isle of Arran, Scotland. Scot. J. Geol., 2002, 38, 83–92CrossRefGoogle Scholar
  101. [101]
    Fuglewicz R., Lower Triassic footprints from the Swietokrzyskie (Holy Cross) Mountains, Poland. Acta Palaeontol. Pol., 1990, 35, 109–164Google Scholar
  102. [102]
    Peabody F.E., Occurrence of Chirotherium in South America. Bulletin of the Geological Society of America, 1955, 66, 239–240CrossRefGoogle Scholar
  103. [103]
    Brusatte S.L., Benton M.J., Lloyd G.T., Ruta M., Wang. S.C., Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). Earth Env. Sci. T. R. Soc., 2011, 101, 367–382Google Scholar
  104. [104]
    Klein H., Haubold H., Archosaur footprints — potential for biochronology of Triassic continental sequences. New Mexican Museum of Natural History Sciences Bulletin, 2007, 41, 120–130Google Scholar
  105. [105]
    Bock W., Triassic reptilian tracks and trends of locomotive evolution. J. Peleontol., 1952, 26, 395–433Google Scholar
  106. [106]
    Courel L., Demathieu G., Gand G., Contribution apportée par l’ ichthyologie a quelques disciplines de la géologie — example des traces de Vertébrés du Trias moyen de la bordue orientale du Massif Central. Université Dijon Mémoires, 1982, 7, 313–326Google Scholar
  107. [107]
    Leonardi G., Isochirotherium sp.: Pista de um gigentesco Tecodonte na Formacao Antenor Navarro, Soisa, Brazil. Revista Brasilia Geologica, 1980, 10, 186–190Google Scholar
  108. [108]
    Carrano M.T., Wilson J.A., Taxon distributions and the tetrapod track record. Paleobiology, 2001, 27, 563–581CrossRefGoogle Scholar
  109. [109]
    Gauthier J.A., Saurichian monophyly and the origin of birds. Memoires of the Californian Acadamy of Science, 1986, 8, 1–55Google Scholar
  110. [110]
    Benton M.J., Clark J.M., Archosaur phylogeny and the relationships of the crocodylia. Systematic Association Special Volume, 1988, 35, 295–338Google Scholar
  111. [111]
    Gower D., The cranial and mandibular osteology of a new rauisuchian archosaur from the Middle Triassic of southern Germany. Stuttgarter Beiträge zur Naturkunde B 1999, 280, 1–49Google Scholar
  112. [112]
    Nesbitt S.J., The anatomy of Effigia okeeffeae (Archosauria, Suchia), theropod-like convergence, and the distribution of related taxa. B. Am. Mus. Nat. Hist., 2007, 302, 1–84CrossRefGoogle Scholar
  113. [113]
    Sereno P.C., Basal archosaurs: phylogenetic relationships and functional implications. Journal of Vertebrate Palaeontology Memoirs, 1995, 2, 1–53CrossRefGoogle Scholar
  114. [114]
    Oosterink H.W., Berkelder W., Jong C. de Lankamp J., Winkelhorst H., Sauriens uit de Onder-Muschelkalk van Winterswijk. Staringia 2003, 11, 1–145Google Scholar
  115. [115]
    Warren J.K., Evaporite sedimentology. Prentice Hall Inc., New Jersey, 1989Google Scholar
  116. [116]
    Brothers R.J., Kemp A.E., Maltman A.J., Mechanical development of vein structures due to the passage of earthquake waves through poorly-consolidated sediments. Tectonophysics, 1996, 266, 227–244CrossRefGoogle Scholar
  117. [117]
    Diedrich C., Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements With emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea. Global and Planetary Change, 2009, 65, 27–55CrossRefGoogle Scholar
  118. [118]
    Diedrich C., Middle Triassic limulid crustacean reproduction intertidal flats of Europe and contribution to the variability of Kouphichnium Nopcsa, 1923 tracks — early Mesozoic limulid mating migrations into the Germanic Basin and reptile food chain reactions. Biological Journal of the Linnaean Society London, 2011, 103, 76–105CrossRefGoogle Scholar
  119. [119]
    Lu H., Zhang Y., Xiao J, Chirotherium: fossil footprints of primitive reptiles in the Middle Triassic Guanling Formation, Zhenfeng, Guizhou Province, China. Acta Geol. Sin., 2004, 78, 468–474Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Private Research Institute PaleologicHalle/WestphGermany

Personalised recommendations