Central European Journal of Geosciences

, Volume 4, Issue 3, pp 425–438

Dental microwear texture analysis of late Pliocene Procynocephalus subhimalayanus (Primates: Cercopithecidae) of the Upper Siwaliks, India

Research Article


Late Pliocene Procynocephalus subhimalayanus from the Upper Siwaliks, India is known from only three specimens. The dietary proclivities of this taxon have implications for reconstructing the paleoecology of the Upper Siwaliks. The dental microwear texture properties of Procynocephalus are compared to those from extant tropical forest primates including Alouatta palliata (n = 11), Cebus apella (n = 13), Gorilla gorilla (n = 9), Lophocebus albigena (n = 15) and Trachypithecus cristatus (n = 12). Dental microwear textures are generated by scanning the surface enamel of Facet 9 using white-light confocal microscopy at 100x. Four variables were extracted from scale-sensitive fractal analysis, and the data were ranked before ANOVA with post-hoc tests of significance and multivariate analyses were performed. Procynocephalus clusters closest to Lophocebus, Cebus and some Gorilla specimens suggesting hard-object feeding characterized a portion of its diet. The dental microwear texture of Procynocephalus supports interpretations of widespread grasslands of the Late Pliocene Kansal Formation (Pinjor zone). The extreme enamel complexity characterizing Procynocephalus may derive from consumption of underground storage organs, or other foods with high grit loads. Foods consumed near ground level carry a heavy load of abrasive minerals possibly contributing to greater enamel surface complexity and textural fill volume.


Pinjor Kansal Formation papionin Parapapio whitei Paranthropus robustus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baker W.E., Durand H.M., Sub-Himalayan fossil remains of the Dàdùpur collection. J. Asiatic Society, Bengal. 1836, 5, 739–741Google Scholar
  2. [2]
    Szalay F.S., Delson E., Evolutionary history of the primates. Academic Press Inc., New York, 1979Google Scholar
  3. [3]
    Barry J.C., The history and chronology of Siwalik cercopithecids. Hum. Evol., 1987, 2, 47–58CrossRefGoogle Scholar
  4. [4]
    Verma B.C., Procynocephalus pinjorii, sp. nov. a new fossil primate from Pinjor Beds (lower Pleistocene), East of Chandigarh. J. Paleontol. Soc. India, 1969, 13, 53–57Google Scholar
  5. [5]
    Azzaroli A., Napoleone G., Magnetostratigraphic investigation of the Upper Siwaliks near Pinjor, India. Riv. Ital. Paleont., 1982, 87, 739–762Google Scholar
  6. [6]
    Benefit B., Pickford M., Miocene fossil cercopithecoids from Kenya. Am. J. Phys. Anthropol. 1986, 69, 441–464CrossRefGoogle Scholar
  7. [7]
    Pickford M., The chronology of the Cercopithecoidea of East Africa. Hum. Evol., 1987, 2, 1–17CrossRefGoogle Scholar
  8. [8]
    Miller E.R., Benefit B.R., McCrossin M.L., Plavcan J.M., Leakey L.G., El-Barkooky A.N., Handan M.A., Abdel Gawad M.K., Hassan S.M., Simons E.L., Systematics of early and middle Miocene OldWorld monkeys. J. Hum. Evol., 2009, 57, 195–211CrossRefGoogle Scholar
  9. [9]
    Senut B., Pickford M., Ségalen L., 2009, Neogene desertification of Africa. C. R. Geoscience, 2009, 341, 591–602CrossRefGoogle Scholar
  10. [10]
    Ardito G., Mottura A., An overview of the geographic and chronological distribution of West European cercopithecoids. Hum. Evol., 1987, 2, 29–45CrossRefGoogle Scholar
  11. [11]
    Jablonski N.G., Fossil Old World monkeys: the Late Neogene radiation. In: Hartwig W.C. (Ed.), The primate fossil record. Cambridge University Press, Cambridge, 2002, 225–300Google Scholar
  12. [12]
    Takai M., Maschenko E.N., Nishimura T.D., Anezaki T., Suzuki T., Phylogenetic relationships and biogeographic history of Paradolichopithecus sushkini Trofimov 1977, a large-bodied cercopithecine monkey from the Pliocene of Eurasia. Quat. Intl., 2008, 179, 108–119CrossRefGoogle Scholar
  13. [13]
    Nishimura T.D., Zhang Y., Takai M., Nasal anatomy of Paradolichopithecus gansuensis (early Pleistocene, Longdan, China) with comments on phyletic relationships among the species of this genus. Folia Primatol., 2010, 81, 53–62CrossRefGoogle Scholar
  14. [14]
    van der Geer A.A.E., Sondaar P.Y., The postcranial elements of Paradolichopithecus arvernensis (Primates, Cercopithecidae, Papionini) from Lesvos, Greece. Ann. Geol. Helleniques, 2002, 39, 71–86Google Scholar
  15. [15]
    Dennell R.W., The taphonomic record of Upper Siwaliks (Pinjor stage) landscapes in the Paabi Hills, northern Pakistan, with consideration regarding the preservation of hominin remains. Quat. Intl. 2008, 192, 62–77CrossRefGoogle Scholar
  16. [16]
    Williams F.L., Holmes N.A., Evidence of terrestrial diets in Pliocene Eurasian papionins (Mammalia: Primates) inferred from low-magnification stereomicroscopy of molar enamel use-wear scars. Palaios, 2011, 26, 720–729CrossRefGoogle Scholar
  17. [17]
    Scott R.S., Ungar P.S., Bergstrom T.S., Brown C.A., Grine F.E., Teaford M.F., Walker A., Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature, 2005, 436, 693–695CrossRefGoogle Scholar
  18. [18]
    Scott R.S., Ungar P.S., Bergstrom T.S., Brown C.A., Childs B.E., Teaford M.F., Walker A., Dental microwear texture analysis: technical considerations. J. Hum. Evol., 2006, 51, 339–349CrossRefGoogle Scholar
  19. [19]
    Ungar P.S., Scott R.S., Scott J.R., Teaford M.F., Dental microwear analysis: historical perspectives and new approaches. In: Irish J.D., Nelson J.D. (Eds.), Technique and application in dental anthropology. Cambridge University Press: Cambridge, 2008, 389–425CrossRefGoogle Scholar
  20. [20]
    Ungar P.S., Grine F.E., Teaford M.F., Dental microwear and diet of the Plio-Pleistocene hominin Paranthropus boisei. PLoS One, 2008, 3, e2044, doi:10.1371/journal.pone.0002044CrossRefGoogle Scholar
  21. [21]
    Ungar P.S., Scott R.S., Grine F.E., Teaford M.F., Molar microwear textures and the diets of Australopithecus afarensis and Australopithecus anamensis. Philos. T. R. Soc. B, 2010, 365, 3345–3354CrossRefGoogle Scholar
  22. [22]
    Scott J.R., Godfrey L.R., Jungers W.L., Simons E.L., Teaford M.F., Ungar P.S., Walker A., Dental microwear texture analysis of two subfamilies of subfossil lemurs from Madagascar. J. Hum. Evol., 2009, 56, 405–416CrossRefGoogle Scholar
  23. [23]
    Merceron G., Scott J.S., Scott R.S., Geraads D., Spassov N., Ungar P.S., Folivory or fruit/seed predation for Mesopithecus, an earliest colobine from the late Miocene of Eurasia? J. Hum. Evol., 2009, 57, 732–738CrossRefGoogle Scholar
  24. [24]
    Scott R.S., Teaford M.F., Ungar P.S., Dental microwear texture and anthropoid diets. Am. J. Phys. Anthropol., 2012, 147, 551–579CrossRefGoogle Scholar
  25. [25]
    Galbany J., Estebaranz F., Martínez L.M., Pérez-Pérez A., Buccal dental microwear variability in extant African Hominoidea: taxonomy versus ecology. Primates, 2009, 50, 221–230CrossRefGoogle Scholar
  26. [26]
    Teaford M.F., What do we know and not know about diet and enamel structure? In: Ungar P.S. (Ed.), Evolution of the human diet: the known, the unknown and the unknowable. Oxford University Press, New York, 2007, 56–76Google Scholar
  27. [27]
    Conover W.J., Inman R.L., Rank transformation as a bridge between parametric and nonparametric statistics. Am. Stat., 1981, 35, 124–129Google Scholar
  28. [28]
    Lambert J.E., Chapman C.A., Wrangham R.W., Conklin-Brittain N.L., Hardness of cercopithecine foods: implications for the critical function of enamel thickness in exploiting fallback foods. Am. J. Phys. Anthropol., 2004, 125, 363–368CrossRefGoogle Scholar
  29. [29]
    Ungar P.S., Teaford M.F., Glander K.E., Pastor R.F., Dust accumulation in the canopy: a potential cause of dental microwear in primates. Am. J. Phys. Anthropol., 1995, 97, 93–97CrossRefGoogle Scholar
  30. [30]
    Koufos G.D., The Neogene cercopithecids (Mammalia, Primates) of Greece: Geodiversitas, 2009, 31, 817–850CrossRefGoogle Scholar
  31. [31]
    Youlatos D., Koufos G.D., Locomotor evolution of Mesopithecus (Primates: Colobinae) from Greece: evidence from selected astragalar characters. Primates, 2010, 51, 23–35CrossRefGoogle Scholar
  32. [32]
    Maslin M.A., Christensen B., Tectonics, orbital forcing, global climate change, and human evolution in Africa: introduction to the African paleoclimate special volume. J. Hum. Evol., 2007, 53, 443–464CrossRefGoogle Scholar
  33. [33]
    Sponheimer M., Lee-Thorp J.A., Differential resource utilization by extant great apes and australopithecines: towards solving the C4 conundrum. Comp. Biochem. Phys., 2003, 136, 27–34Google Scholar
  34. [34]
    Dominy N.J., Vogel E.R., Yeakel J.D., Constantino P., Lucas P.W., Mechanical properties of plant underground storage organs and implications for dietary models of early hominins. Evol. Biol., 2008, 35, 159–175CrossRefGoogle Scholar
  35. [35]
    Daegling D.J., Grine F.E., Terrestrial foraging and dental microwear in Papio ursinus. Primates, 1999, 40, 559–572CrossRefGoogle Scholar
  36. [36]
    Catlett K.K., Schwartz G.T., Godfrey L.R., Jungers W.L., “Life history space”: a multivariate analysis of life history variation in extant and extinct Malagasy lemurs. Am. J. Phys. Anthropol., 2010, 142, 391–404CrossRefGoogle Scholar
  37. [37]
    Williams F.L., Dietary proclivities in Procynocephalus subhimalayanus and other purported terrestrial primates including Parapapio whitei and Oreopithecus bambolii using white-light confocal microscopy. Am. J. Phys. Anthropol., 2011, Suppl 52, 312Google Scholar
  38. [38]
    Fourie N.H., Lee-Thorp J.A., Ackermann R.R., Biogeochemical and craniometric investigation of dietary ecology, niche separation, and taxonomy of Plio-Pleistocene cercopithecoids from the Makapansgat limeworks. Am. J. Phys. Anthropol., 2008, 135, 121–135CrossRefGoogle Scholar
  39. [39]
    Cerling T.E., Hart J.A., Hart T.B., Stable isotope ecology in the Ituri Forest. Oecologia, 2004, 138, 5–12CrossRefGoogle Scholar
  40. [40]
    Codron D., Luyt J., Lee-Thorp J.A., Sponheimer M., De Ruiter D., Codron J., Utilization of savanna-based resources by Plio-Pleistocene baboons. S. Afr. J. Sci., 2005, 101, 245–249Google Scholar
  41. [41]
    Sanson G.D., Kerr S.A., Gross K.A., Do silica phytoliths really wear mammalian teeth? J. Arch. Sci, 2007, 34, 526–531CrossRefGoogle Scholar
  42. [42]
    Dumont E.R., Ryan T.M., Godfrey L.R., The Hadropithecus conundrum reconsidered, with implications for interpreting diet in fossil hominins. Proc. R. Soc. B, 2011, 278, 3654–3661CrossRefGoogle Scholar
  43. [43]
    Doran-Sheehy D., Mongo P., Lodwick J., Conklin-Brittain N.L., Male and female western gorilla diet: preferred foods, use of fallback resources, and implications for ape versus Old World monkey foraging strategies. Am. J. Phys. Anthropol., 2009, 140, 727–738CrossRefGoogle Scholar
  44. [44]
    Head J.S., Boesch C., Makaga L., Robbins M.M., Sympatric chimpanzees (Pan troglodytes troglodytes) and gorillas (Gorilla gorilla gorilla) in Loango National Park, Gabon: dietary composition, seasonality, and intersite comparisons. Int. J. Primatol., 2011, 32, 755–775CrossRefGoogle Scholar
  45. [45]
    Yeakel J.D., Bennett N.C., Koch P.L., Dominy N.J., The isotopic ecology of African mole rats informs hypotheses on the evolution of human diet. Proc. R. Soc. B., 2007, 274, 1723–1730CrossRefGoogle Scholar
  46. [46]
    Merceron G., Escarguel G., Angibault J.-M., Verheyden-Tixier H., Can dental microwear textures record inter-individual dietary variation? PLoS One, 2010, 5, 9542–9551CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Department of AnthropologyGeorgia State UniversityAtlantaUSA

Personalised recommendations