Advertisement

Central European Journal of Geosciences

, Volume 4, Issue 3, pp 383–387 | Cite as

Soot in Cretaceous-Paleogene boundary clays worldwide: is it really derived from fossil fuel beds close to Chicxulub?

  • Pavle I. Premović
Communication

Abstract

High soot contents have been reported in Cretaceous-Paleogene boundary (KPB) clays worldwide. One of the interpretations suggests this material comes from combustion of fossil fuels such as crude oil, coal or oil shales near the Chicxulub impact site. Combustion was triggered by the KPB impactor. In this Note, I show that the estimated mass of crude oil (or fossil hydrocarbons in general) burned (ca. 1017–1019 g), based on the average amount of soot (0.0022–0.012 g cm−2) or elemental carbon (0.011 g cm−2) found at the marine KPB sites, contradicts the fossil hydrocarbons hypothesis.

Keywords

Cretaceous-Paleogene boundary soot crude oil combustion fossil fuel fossil carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Shukolyukov A., Lugmair G.W., Isotopic evidence for the Cretaceous-Tertiary impactor and its type. Science, 1998, 282, 927–930CrossRefGoogle Scholar
  2. [2]
    Wolbach W.S., Lewis R.S., Anders E., Cretaceous extinctions: evidence for wildfires and search for meteoritic material. Science, 1985, 230, 167–170CrossRefGoogle Scholar
  3. [3]
    Wolbach W.S., Gilmour I., Anders E., Orth C.J., Brooks R.R., Global fire at the Cretaceous-Tertiary boundary. Nature, 1988, 334, 665–669CrossRefGoogle Scholar
  4. [4]
    Wolbach W.S., Anders E., Nazarov M.A., Fires at the K-T boundary: carbon at the Sumbar, Turkmenia, site. Geochim. Cosmochim. Acta, 1990, 54, 1133–1146CrossRefGoogle Scholar
  5. [5]
    Wolbach W.S., Gilmour I., Anders E., Major wildfires at the Cretaceous-Tertiary boundary. In: Sharpton B., Ward P. (Eds.), Global catastrophes in Earth history. Geological Society of America, Boulder, Special Paper 247, 1990, 391–400Google Scholar
  6. [6]
    Wolbach W.S., Widicus S.L., Kyte F.T., A search for soot from global wildfires in Central Pacific Cretaceous-Tertiary boundary and other extinction and impact horizon sediments. Astrobiology, 2003, 3, 91–97CrossRefGoogle Scholar
  7. [7]
    Belcher C.M., Collinson M.E., Sweet A.R., Hildebrand A.R., Scott A.C., Constraints on the thermal energy released from the Chixculub impactor: new evidence from multi method charcoal analysis. J. Geol. Soc. London, 2005, 162, 591–602CrossRefGoogle Scholar
  8. [8]
    Gilmour I., Sephton M.A., Morgan J.V., Organic geochemistry of a hydrocarbon-rich calcarenite from the Chicxulub scientific drilling program. In: Proceedings of the 34th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 2003, abs. 1771Google Scholar
  9. [9]
    Belcher C.M., Collinson M.E., Sweet A.R., Hildebrand A.R., Scott A.C., Fireball passes and nothing burnsthe role of thermal radiation in the K-T event: evidence from the charcoal record of North America. Geology, 2003, 31, 1061–1064CrossRefGoogle Scholar
  10. [10]
    Belcher C.M., Impacts and Wildfires 210 — An analysis of the K-T Event. In: Koeberl C., Gilmour I. (Eds.), Biological processes associated with impact events. Springer, Berlin, 2006, 221–243CrossRefGoogle Scholar
  11. [11]
    Belcher C.M., Reigniting the Cretaceous-Palaeogene firestorm debate. Geology, 2009, 37, 1147–1148CrossRefGoogle Scholar
  12. [12]
    Harvey M.C., Brassell S.C., Belcher C.M., Montanari A., Combustion of fossil organic matter at the Cretaceous-Paleogene (K-P) boundary. Geology, 2008, 36, 355–358CrossRefGoogle Scholar
  13. [13]
    Ransohoff L.M., Knudson K., Bush B.W., Small R.D., Material inventories and smoke properties for U.S. target areas. Pacific-Sierra Research Corporation, Los Angeles, 1989Google Scholar
  14. [14]
    Turco R.P., Toon O.B., Ackerman T.P., Pollack J.B., Sagan C., Climate and smoke: an appraisal of nuclear winter. Science, 1990, 247, 166–176CrossRefGoogle Scholar
  15. [15]
    Shuvalov V.V., Artemieva N.A., Numerical modeling of Tunguska-like impacts. Planet. Space Sci., 2002, 50, 181–192CrossRefGoogle Scholar
  16. [16]
    Ebel D.S., Grossman L., Spinel-bearing spherules condensed from the Chicxulub impact-vapor plume. Geology, 2005, 33, 293–296CrossRefGoogle Scholar
  17. [17]
    Durda D.D., Kring D.A., Pierazzo E., Melosh H. J., Model calculations of the proximal and globally distributed distal ejecta from the Chicxulub impact crater. In: Proceedings of the 28th Lunar and Planetary Science Conference. Lunar and Planetary Institute, Houston, 1997, 315–316Google Scholar
  18. [18]
    Grajales-Nishimura J.M., Cedillo-Pardo E., Rosales-Domínguez C., Morán-Zenteno D.J., Alvarez W., Claeys P., Ruíz-Morales J., García-Hernández J., Padilla-Avila P., Sánchez-Ríos A., Chicxulub impact: the origin of reservoir and seal facies in the southeastern Mexico oil fields. Geology, 2000, 28, 307–310CrossRefGoogle Scholar
  19. [19]
    Heymann D., Yancey T.E, Wolbach W.S, Thiemens M.H, Johnson E.A, Roach D., Moecker S., Geochemical markers of the Cretaceous-Tertiary boundary event at Brazos River, Texas, USA. Geochim. Cosmochim. Acta, 1998, 62, 173–181CrossRefGoogle Scholar
  20. [20]
    Toon O.B., Zahnle K., Morrison D., Turco R.P., Covey C., Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys., 1997, 35, 41–78CrossRefGoogle Scholar
  21. [21]
    Magoon L.B., Hudson T.L., Cook H.E., Pimienta-Tamabra(!)-a giant supercharged petroleum system in the southern Gulf of Mexico, onshore and offshore Mexico. In: Bartolini C., Buffler R.T., Cantu-Chapa A. (Eds.), The western Gulf of Mexico basin: tectonics, sedimentary basins, and petroleum systems. The American Association of Petroleum Geologists, USA, 75, 2001, 83–125Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Laboratory for Geochemistry, Cosmochemistry and AstrochemistryUniversity of NišNišSerbia

Personalised recommendations