Central European Journal of Geosciences

, Volume 4, Issue 2, pp 208–218 | Cite as

Application of the Linkam TS1400XY heating stage to melt inclusion studies

  • Rosario Esposito
  • Rita Klebesz
  • Omar Bartoli
  • Yury I. Klyukin
  • Daniel Moncada
  • Angela L. Doherty
  • Robert J. BodnarEmail author
Research Article


Melt inclusions (MI) trapped in igneous phenocrysts provide one of the best tools available for characterizing magmatic processes. Some MI experience post-entrapment modifications, including crystallization of material on the walls, formation of a vapor bubble containing volatiles originally dissolved in the melt, or partial to complete crystallization of the melt. In these cases, laboratory heating may be necessary to return the MI to its original homogeneous melt state, followed by rapid quenching of the melt to produce a homogeneous glass phase, before microanalyses can be undertaken.

Here we describe a series of heating experiments that have been performed on crystallized MI hosted in olivine, clinopyroxene and quartz phenocrysts, using the Linkam TS1400XY microscope heating stage. During the experiments, we have recorded the melting behaviors of the MI up to a maximum temperature of 1360°C. In most of the experiments, the MI were homogenized completely (without crystals or bubbles) and remained homogeneous during quenching to room temperature. The resulting single phase MI contained a homogeneous glass phase. These tests demonstrate the applicability of the Linkam TS1400XY microscope heating stage to homogenize and quench MI to produce homogeneous glasses that can be analyzed with various techniques such as Electron Microprobe (EMP), Secondary Ion Mass Spectrometry (SIMS), Laser ablation Inductively Coupled Plasma Mass Spectrometry (LA ICP-MS), Raman spectroscopy, FTIR spectroscopy, etc.

During heating experiments, the optical quality varied greatly between samples and was a function of not only the temperature of observation, but also on the amount of matrix glass attached to the phenocryst, the presence of other MI in the sample which are connected to the outside of the crystal, and the existence of mineral inclusions in the host.


microscope heating stage melt inclusion microthermometry volatiles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Métrich N., Wallace P.J., Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In: Putirka K.D. and Tepley F.J., Minerals, Inclusions and Volcanic Processes. Rev. Mineral. Geochem., 2008, 69, 363–402Google Scholar
  2. [2]
    Sobolev A.V., Hofmann A.W., Jochum K.P., Kuzmin D.V., Stoll B., A young source for the Hawaiian plume. Nature, 2011, 476, 434–437CrossRefGoogle Scholar
  3. [3]
    De Vivo B., and Bodnar, R.J., Melt inclusions in volcanic systems. Elsevier Science, the Netherlands, 2003Google Scholar
  4. [4]
    Helo C., Longpre M.A., Shimizu N., Clague D.A., Stix J., Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nat. Geosci., 2011, 4, 260–263CrossRefGoogle Scholar
  5. [5]
    Danyushevsky L.V., McNeill A.W., Sobolev A.V., Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem. Geol., 2002, 183, 5–24CrossRefGoogle Scholar
  6. [6]
    Lowenstern J.B., Applications of silicate-melt inclusions to the study of magmatic volatiles. In: Thompson J.F.H. (Ed.), Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada, Short Course, Canada, 1995, 23, 71–99Google Scholar
  7. [7]
    Roedder E., Origin and significance of magmatic inclusions. B. Mineral., 1979, 102, 487–510Google Scholar
  8. [8]
    Sobolev A.V., Kostyuk V.P., Magmatic crystallization based on study of melt inclusions. In: Roedder E. (Ed.), Fluid Inclusion Research, Proceedings of COFFI, The University of Michigan Press, 1976, 9, 182–253Google Scholar
  9. [9]
    Fedele L., Bodnar R.J., DeVivo B., Tracy R., Melt inclusion geochemistry and computer modeling of trachyte petrogenesis at Ponza, Italy. Chem. Geol., 2003, 194, 81–104CrossRefGoogle Scholar
  10. [10]
    Nielsen R.L., Crum J., Bourgeois R., Hascall K., Forsythe L.M., Fisk M.R., Christie D.M., Melt inclusions in high-An plagioclase from the Gorda Ridge: an example of the local diversity of MORB parent magmas. Contrib. Mineral. Petr., 1995, 122, 34–50CrossRefGoogle Scholar
  11. [11]
    Sinton C.W., Christie D.M., Coombs V.L., Nielsen R.L., Fisk M.R., Near-primary melt inclusions in anorthite phenocrysts from the Galapagos Platfrom. Earth Planet. Sc. Lett., 1993, 119, 527–537CrossRefGoogle Scholar
  12. [12]
    Student J.J., Bodnar R.J., Synthetic Fluid Inclusions XIV: Coexisting Silicate Melt and Aqueous Fluid Inclusions in the Haplogranite-H2O-NaCl-KCl System. J. Petrol., 1999, 40, 1509–1525CrossRefGoogle Scholar
  13. [13]
    Anderson A.T., Davis A.M., Lu F., Evolution of Bishop Tuff Rhyolitic Magma Based on Melt and Magnetite Inclusions and Zoned Phenocrysts. J. Petrol., 2000, 41, 449–473CrossRefGoogle Scholar
  14. [14]
    Skirius C.M., Peterson J.W., Anderson A.T., Homogenizing Rhyolitic Glass Inclusions from the Bishop Tuff. Am. Mineral., 1990, 75, 1381–1398Google Scholar
  15. [15]
    Student J.J., Bodnar R.J., Silicate melt inclusions in porphyry copper deposits: Identification and homogenization behavior. Can. Mineral., 2004, 42, 1583–1599CrossRefGoogle Scholar
  16. [16]
    Thomas J.B., Bodnar R.J., Shimizu N., Chesner C.A., Melt Inclusions in Zircon. Rev. Mineral. Geochem., 2003, 53, 63–87CrossRefGoogle Scholar
  17. [17]
    Bartoli O., Cesare B., Poli S., Bodnar R.J.., Frezzotti M.L., Acosta-Vigil A, Meli S., Melting in the deep crust: message from melt inclusions in peritectic garnet from migmatites. Mineral. Mag., 2011, 75, 495Google Scholar
  18. [18]
    Cesare B., Acosta-Vigil A., Ferrero S., Bartoli O., Melt inclusions in migmatites and granulites. J. Virt. Expl., 2011, 40, n. 2, doi: 10.3809/jvirtex.2011.00268Google Scholar
  19. [19]
    Ferrero S., Bartoli O., Cesare B., Salvioli-Mariani E., Acosta-Vigil A., Cavallo A., Groppo C., Battiston S., Microstructures of melt inclusions in anatectic metasedimentary rocks. J. Metamorph. Geol., 2012, doi: 10.1111/j.1525-1314.2011.00968.xGoogle Scholar
  20. [20]
    Clocchiatti R., Les inclusions vitreuses des cristaux de quartz; Etude optique, thermo-optique et chimique; Applications geologiques. Vitreous inclusions in quartz crystals; optical, thermo-optical and chemical studies; geologic applications. Mem. S. Geo. F., no, 1975, 122Google Scholar
  21. [21]
    Frezzotti M.L., Magmatic immiscibility and fluid phase evolution in the Mount Genis granite (southeastern Sardinia, Italy). Geochim. Cosmochim. Ac., 1992, 56, 21–33CrossRefGoogle Scholar
  22. [22]
    Lowenstern J.B., Dissolved Volatile Concentrations in an Ore-Forming Magma. Geology, 1994, 22, 893–896CrossRefGoogle Scholar
  23. [23]
    Reyf F.G., Direct evolution of W-rich brines from crystallizing melt within the Mariktikan granite pluton, west Transbaikalia. Miner. Deposita, 1997, 32, 475–490CrossRefGoogle Scholar
  24. [24]
    Bodnar R.J., Student J.J., Melt inclusions in plutonic rocks: Petrography and microthermometry. In: Webster J.D. (Ed.), Melt Inclusions in Plutonic Rocks, Mineralogical Association of Canada, Short Course, Montreal, Quebec, 2006, 36, 1–25Google Scholar
  25. [25]
    Schiano P., Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth-Sci. Rev., 2003, 63, 121–144CrossRefGoogle Scholar
  26. [26]
    Sobolev A.V., Dmitriev L.V., Barsukov V.L., Nevsorov V.N., Slutsky A.B., The formation conditions of the high magnesium olivines from the monomineralic fraction of Luna 24 regolith. Proceedings of the 11th Lunar and Planetary Science Conference, 1980, 105–116Google Scholar
  27. [27]
    Beddoe-Stephens B., Aspden J.A., Shepherd T.J., Glass inclusions and melt compositions of the Toba Tuffs, northern Sumatra. Contrib. Mineral. Petr., 1983, 83, 278–287CrossRefGoogle Scholar
  28. [28]
    Newman S., Chesner C., Volatile compositions of glass inclusions from the 75Ka Toba Tuff, Sumatra. Paper presented at the 1989 annual meeting of the Geological Society of America, St. Louis, MO, US, November 6–9, 1989Google Scholar
  29. [29]
    Chesner C.A., Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. J. Petrol., 1998, 39, 397–438CrossRefGoogle Scholar
  30. [30]
    Esposito R., Bodnar R.J., Danyushevsky L., De Vivo B., Fedele L., Hunter J., Lima A., Shimizu N., Volatile Evolution of Magma Associated with the Solchiaro Eruption in the Phlegrean Volcanic District (Italy). J. Petrol., 2011, 52, 2431–2460CrossRefGoogle Scholar
  31. [31]
    Bertagnini A., Landi P., Rosi M., Vigliargio A., The Pomici di Base plinian eruption of Somma-Vesuvius. J. Volcanol. Geoth. Res., 1998, 83, 219–239CrossRefGoogle Scholar
  32. [32]
    Landi P., Bertagnini A., Rosi M., Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base plinian eruption of Somma-Vesuvius (Italy). Contrib. Mineral. Petr., 1999, 135, 179–197CrossRefGoogle Scholar
  33. [33]
    Thomas J.B., Bodnar R.J., A technique for mounting and polishing melt inclusions in small (>1 mm) crystals. Am. Mineral., 2002, 87, 1505–1508Google Scholar
  34. [34]
    Sobolev A.V., Danyushevsky L.V., Dmitriev L.V., Sushchevskaya N.M., High-Alumina Magnesium Tholeiite as One of Primary Melts of Basalts of the Mid-Oceanic Ridges. Geokhimiya+, 1988, 1522–1528Google Scholar
  35. [35]
    Severs M.J., Azbej T., Thomas J.B., Mandeville C.W., Jr., Bodnar R.J., Experimental determination of H2O loss from melt inclusions during laboratory heating. Chem. Geol., 2007, 237(3–4), 358–371CrossRefGoogle Scholar
  36. [36]
    Anderson A.T., Jr., Hourglass inclusions; theory and application to the Bishop rhyolitic tuff. Am. Mineral., 1991, 76, 530–547Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Rosario Esposito
    • 1
  • Rita Klebesz
    • 1
    • 2
  • Omar Bartoli
    • 3
  • Yury I. Klyukin
    • 4
  • Daniel Moncada
    • 1
  • Angela L. Doherty
    • 1
    • 2
    • 5
  • Robert J. Bodnar
    • 1
    Email author
  1. 1.Department of GeosciencesVirginia Polytechnic Institute & State UniversityBlacksburgUSA
  2. 2.Dipartimento di Scienze della TerraUniversità di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di Scienze della TerraUniversità degli Studi di ParmaParmaItaly
  4. 4.Institute of Geology and Geochemistry of Urals BranchRussian Academy of SciencesYekaterinburgRussia
  5. 5.Dipartimento degli Alimenti e dell’AmbienteUniversità degli Studi di MessinaMessinaItaly

Personalised recommendations