The sinkhole enigma in the Alpine Foreland, Southeast Germany: Evidence of impact-induced rock liquefaction processes


Sudden collapse of the Quaternary soil to form sinkholes on the order of meters and tens of meters has been a geologic phenomenon within living memory in a localized area north of Lake Chiemsee in Southeast Germany. Failing a satisfying explanation, a relation with an undefined glaciation process has always been proposed. Excavations and geophysical measurements at three newly affected sites show underground features such as prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Since strong earthquakes can reasonably be excluded to have affected the area under discussion, it has been suggested that the observed widespread liquefaction is related with the recently proposed Holocene Chiemgau meteorite impact event. Except for one earlier proposed but unassertive relation between impact and liquefaction, the obviously direct association of both processes in the Chiemgau area emphasizes that observed paleoliquefaction features need not necessarily have originated solely from paleoseismicity but can provide a recognizable regional impact signature.

This is a preview of subscription content, access via your institution.


  1. [1]

    Doppler G., Geological map of Bavaria (1: 25,000), sheet #7941 Trostberg, 1982

  2. [2]

    Bayerisches Geologisches Landesamt (ed.), Geological map of Bavaria, (1: 500,000), 4th edition, 1997

  3. [3]

    Stewart D., Knox R., The earthquake that never went away. Gutenberg-Richter Publications, Marble Hill, MO, 1993

    Google Scholar 

  4. [4]

    Sims J.D., Garvin C.D., Recurrent liquefaction at Soda Lake, California, induced by the 1989 Loma Prieta earthquake, and 1990 and 1991 aftershocks: Implications for paleoseismicity studies. B. Seismol. Soc. Am., 1995, 85, 51–65

    Google Scholar 

  5. [5]

    Obermeier S.F., The New Madrid Earthquakes: An engineering-geologic interpretation of relict liquefaction features. U.S. GPO, Washington, 1989

    Google Scholar 

  6. [6]

    Obermeier S.F., Liquefaction evidence for strong earthquakes of Holocene and Latest Pleistocene ages in the states of Indiana and Illinois, USA. Eng. Geol., 1998, 50, 227–254

    Article  Google Scholar 

  7. [7]

    Tuttle M.P., Hengesh J., Tucker K.B., Lettis W., Deaton S.L., Frost J.D., Observations and comparisons of liquefaction features and related effects induced by the Bhuj earthquake. Earthq. Spectra, 2002, 18(Supp. A), 79–100

    Google Scholar 

  8. [8]

    Youd T.L., Liquefaction mechanisms and induced ground failure. In: Lee W.H.K., Kanamori H., Jennings P.C., Kisslinger C. (Eds.), International Handbook of Earthquake and Engineering Seismology, Part B, Amsterdam, Academic Press, 2003, 1159–1173

    Chapter  Google Scholar 

  9. [9]

    Rydelek P.A., Tuttle M., Seismology: Explosive craters and soil liquefaction. Nature, 2004, 427, 115–116

    Article  Google Scholar 

  10. [10]

    González de Vallejo L.I., Tsigé M., Cabrera L., Paleoliquefaction features on Tenerife (Canary Islands) in Holocene sand deposits. Eng. Geol., 2005, 76, 179–190

    Article  Google Scholar 

  11. [11]

    Wang C.-Y., Wong A., Dreger D.S., Manga, M., Liquefaction limit during earthquakes and underground explosions: implications on groundmotion attenuation. B. Seismol. Soc. Am., 2006, 96,1, 355–363

    Article  Google Scholar 

  12. [12]

    Obermeier S.F., Pond E.C., Olson S.M., Green R.A., 2002, Paleoliquefaction studies in continental settings. In: Ettensohn F.R., Rast N., Brett C:E., Ancient seismites. The Geological Society of America, Boulder, CO, 2002, 13–27

    Chapter  Google Scholar 

  13. [13]

    Huuse M., Jackson C.A.-L., Rensbergen P.v., Davies R.J., Flemings P.B., Dixon R.J., Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview. Basin Research, 2010, 22,4, 342–360, URL:

    Article  Google Scholar 

  14. [14]

    Hurst A., Scott A., Vigorito M., Physical characteristics of sand injectites. Earth Sci. Rev., 2011, 106,3–4, 215–246, URL: http://www.sciencedirect. com/science/article/pii/S0012825211000250

    Article  Google Scholar 

  15. [15]

    Ross J.A., Peakall J., Keevil G.M., An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology, 2011, URL:

  16. [16]

    Alvarez W., Staley E., O’Connor D., Chan M.A., Synsedimentary deformation in the Jurassic of southeastern Utah, a case of impact shaking? Geology, 1998, 26, 579–582

    Article  Google Scholar 

  17. [17]

    Richardson J.E., Melosh H.J., Greenberg R.J., O’Brien D.P., The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus, 2005, 179, 325–349

    Article  Google Scholar 

  18. [18]

    Kirsch R. (Ed.), 2006, Groundwater Geophysics: A tool for Hydrogeology. Springer, Berlin, 2006

    Google Scholar 

  19. [19]

    Wolf L.W., Collier J., Tuttle M., Bodin P., Geophysical reconnaissance of earthquake-induced liqefaction features in the New Madrid seismic zone. J. Appl. Geophys., 1998, 39, 121–129

    Article  Google Scholar 

  20. [20]

    Wolf L.W., Tuttle M.P., Browning S., Park S., Geophysical surveys of earthquake-induced liquefaction deposits in the New Madrid seismic zone. Geophysics, 2006, 71, B223–230

    Article  Google Scholar 

  21. [21]

    Al-Shukri H., Mahdi H.H., Tuttle M., Threedimensional imaging of earthquake-induced liquefaction features with ground penetrating radar near Marianna, Arkansas. Seismol. Res. Lett., 2006, 77, 505–513

    Article  Google Scholar 

  22. [22]

    Obermeier S.F., Using liquefaction-induced features for paleoseismic analysis. In: McCalpin J.P. (Ed.), Paleoseismology. Academic Press, San Diego, CA, 1996, 331–396

    Chapter  Google Scholar 

  23. [23]

    Johnston A.C., Schweig E.S., The enigma of the New Madrid Earthquakes of 1811–1812. Annu. Rev. Earth. Pl. Sc., 1996, 24, 339–384

    Article  Google Scholar 

  24. [24]

    Tuttle M., Barstow N., Liquefaction-Related Ground Failure: A Case Study in the New Madrid Seismic Zone, Central United States. B. Seismol. Soc. Am., 1996, 86, 636–645

    Google Scholar 

  25. [25]

    Stewart D., Knox R., 1995, The earthquake America forgot. Gutenberg-Richter Publications, Marble Hill, MO, 1995

    Google Scholar 

  26. [26]

    Knox R., Stewart D., The New Madrid fault finders guide. Gutenberg-Richter Publications, Marble Hill, MO, 1995

    Google Scholar 

  27. [27]

    Grünthal G., Mayer-Rosa D., Lenhardt W., Abschätzung der Erdbebengefährdung für die D-A-CHStaaten -Deutschland, Österreich, Schweiz [Estimate of earthquake hazard for the D-A-CH countries — Germany, Austria, Switzerland]. Bautechnik, 1998, 75, 753–767 (in German)

    Google Scholar 

  28. [28]

    Galli P., New empirical relationhips between magnitude and distance for liquefaction. Tectonophysics, 2000, 324,3, 169–187

    Article  Google Scholar 

  29. [29]

    Higgins C.G., Schoner C., Sinkholes formed by piping into buried channels. Geomorphology, 1997, 20, 307–312

    Article  Google Scholar 

  30. [30]

    Ormö J., Rossi A.P., Komatsu G., The Sirente crater field, Italy, Meteorit. Planet. Sci., 2002, 37, 1507–1523

    Article  Google Scholar 

  31. [31]

    Stoppa F., The Sirente crater, Italy: Impact versus mud volcano origins, Meteorit. Planet. Sci., 2006, 41, 467–477

    Article  Google Scholar 

  32. [32]

    Speranza F., Sagnotti L. Rochette P., An anthropogenic origin of the “Sirente crater”, Abruzzi, Italy. Meteorit. Planet. Sci., 2004, 39, 635–649

    Article  Google Scholar 

  33. [33]

    Ormö J., Koeberl C., Rossi A.P., Komatsu G., Geological and geochemical data from the proposed Sirente crater field: New age dating and evidence for heating of target, Meteorit. Planet. Sci., 2006, 41, 1331–1345

    Article  Google Scholar 

  34. [34]

    Speranza F., Nicolosi I., Ricchetti N., Etiope G., Rochette P., Sagnotti L., DeRitis R., Chiappini M., The “Sirente crater field,” Italy, revisited. J. Geophys. Res., 2009, 114, B03103, doi:10.1029/2008JB005759

    Article  Google Scholar 

  35. [35]

    Schüssler U., Rappenglück M., Ernstson K., Mayer W., Rappenglück, B., Das Impakt-Kraterstreufeld im Chiemgau [The impact crater strewn field in the Chiemgau region]. Eur. J. Mineral. 2005, 17,Beihefte 1, 124 (in German)

    Google Scholar 

  36. [36]

    Ernstson K., Mayer W., Neumair A., Rappenglück B., Rappenglück M.A., Sudhaus D., Zeller K.W., The Chiemgau Crater Strewn Field: Evidence of a Holocene Large Impact Event in Southeast Bavaria, Germany. Journal of Siberian Federal University, Engineering & Technologies, 2010, 3,1, 72–103, URL:

    Google Scholar 

  37. [37]

    Rappenglück B., Rappenglück M.A., Ernstson K., Mayer W., Neumair A., Sudhaus D., Liritzis I., The fall of Phaethon. A Greco-Roman geomyth preserves the memory of a meteorite impact in Bavaria (south-east Germany). Antiquity, 2010, 84, 428–439, URL: http: //

    Google Scholar 

  38. [38]

    Liritzis I., Zacharias N., Polymeris G.S., Kitis G., Ernstson K., Sudhaus D., Neumair, A., Mayer W., Rappenglück M.A., Rappenglück B., The Chiemgau meteorite impact and tsunami event (Southeast Germany): First OSL dating. Mediterr. Archaeol. Ar., 2011, 10, 17–33 (in press)

    Google Scholar 

  39. [39]

    Hiltl M., Bauer F., Ernstson K., Mayer W., Neumair A., Rappenglück M.A., SEM and TEM analyses of minerals xifengite, gupeiite, Fe2Si (hapkeite?), titanium carbide (TiC) and cubic moissanite (SiC) from the subsoil in the Alpine Foreland: Are they cosmochemical? 42nd Lunar and Planetary Science Conference, 2011, Abstract 1391.pdf., URL:

  40. [40]

    Rappenglück B., Ernstson K., Mayer W., Neumair A., Rappenglück M.A., Sudhaus D., Zeller K.W., The Chiemgau impact: an extraordinary case study for the question of Holocene meteorite impacts and their cultural implications. In: Rubiño-Martín J.A., Belmonte J.A., Prada F., Alberdi A. (Eds.), Cosmology across cultures. Proceedings of a workshop held at Parques de las Ciencias, Granada, Spain, 8–12 September 2008. Astronomical Society of the Pacific, San Francisco, 2009, 338–343, URL:

    Google Scholar 

  41. [41]

    Yang Z.Q., Verbeeck J., Schryvers D., Tarcea N., Popp J., Rösler W., TEM and Raman characterisation of diamond micro- and nanostructures in carbon spherules from upper soils. Diam. Relat. Mater., 2008, 17, 937–943

    Article  Google Scholar 

  42. [42]

    Rösler W., Hoffmann V., Raeymaekers B., Schryvers D., Popp J., Diamonds in carbon spherules — evidence for a cosmic impact? Meteorit. Planet. Sci., 2005, 40,Supplement (Proceedings of 68th Annual Meeting of the Meteoritical Society, held September 12–16, 2005 in Gatlinburg, Tennessee), 5114

    Google Scholar 

  43. [43]

    Collins G.S., Melosh H.J., Marcus R.A., Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci., 2005, 40,6, 817–840

    Article  Google Scholar 

  44. [44]

    Rubtsov V., The Tunguska Mystery. Springer, Berlin, 2009

    Book  Google Scholar 

  45. [45]

    Amick D., Maurath G., Gelinas R., Characteristics of seismically induced liquefaction sites and features located in the vicinity of the 1886 Charleston, South Carolina, earthquake. Seismol. Res. Lett., 1990, 61,2, 117–118

    Google Scholar 

  46. [46]

    Munson P.J., Munson C.A., Pond, E.C., Paleoliquefaction evidence for a strong Holocene earthquake in south-central Indiana. Geology, 1995, 23, 325–328

    Article  Google Scholar 

  47. [47]

    Tuttle M.P., Schweig E.S., Recognizing and dating prehistoric liquefaction features: Lessons learned in the New Madrid seismic zone, central United States. Journal of Geophys. Res., 1996, 101,B3, 6171–6178

    Article  Google Scholar 

  48. [48]

    Tuttle M.P., The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. J. Seismol., 2001, 5, 361–380

    Article  Google Scholar 

  49. [49]

    Huntoon P.W., Upheaval Dome, Canyonlands, Utah: Strain indicators that reveal an impact origin. In: Sprinkel D.A., Chidsey Jr. T.C., Anderson P.B. (Eds.), Geology of Utah’s Parks and Monuments. Utah Geological Association, Salt Lake City, 2000, 1–10

    Google Scholar 

  50. [50]

    Melosh H.J., Impact cratering: A geologic process. Oxford University Press, New York, 1989

    Google Scholar 

  51. [51]

    Fehr K.T., Pohl J., Hochleitner R., Burghausen meteorite strewn field: Status report, August 2002 (in German)

  52. [52]

    Hoffmann V., Rösler W., Patzelt A., Raeymaekers B., Van Espen P., Characterisation of a small crater-like structure in SE Bavaria, Germany. Meteorit. Planet. Sci., 2005, 40,Supplement (Proceedings of 68th Annual Meeting of the Meteoritical Society, September 12–16, 2005 in Gatlinburg, Tennessee), 5158

    Google Scholar 

  53. [53]

    Rösler W., Patzelt A., Hoffmann V., Raeymaekers B., Characterisation of a small crater-like structure in SE Bavaria, Germany: Abstract, European Space Agency, First International Conference on Impact Cratering in the Solar System, ESTEC, Noordwijk, The Netherlands, 08–12 May., 2006

Download references

Author information



Corresponding author

Correspondence to Andreas Neumair.

About this article

Cite this article

Ernstson, K., Mayer, W., Neumair, A. et al. The sinkhole enigma in the Alpine Foreland, Southeast Germany: Evidence of impact-induced rock liquefaction processes. cent.eur.j.geo. 3, 385–397 (2011).

Download citation


  • sinkholes (thunderholes)
  • liquefaction
  • seismicity
  • meteorite impact
  • Kienberg-Southern Germany