Advertisement

Central European Journal of Engineering

, Volume 2, Issue 4, pp 523–531 | Cite as

Impact damage assessment by using peridynamic theory

  • Erkan Oterkus
  • Ibrahim Guven
  • Erdogan Madenci
Research Article
  • 179 Downloads

Abstract

This study presents an application of peridynamic theory for predicting residual strength of impact damaged building components by considering a reinforced panel subjected to multiple load paths. The validity of the approach is established first by simulating a controlled experiment resulting in mixed-mode fracture of concrete. The agreement between the PD prediction and the experimentally observed behavior is remarkable especially considering the simple material model used for the concrete. Subsequently, the PD simulation concerns damage assessment and residual strength of a reinforced panel under compression after impact due to a rigid penetrator.

Keywords

Impact Damage Residual strength Peridynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Klein P.A., Foulk J.W., Chen E.P., Wimmer S.A., et al. Physics-based modeling of brittle fracture: Cohesive formulations and the application of meshfree methods, Theor. Appl. Fract. Mech., Vol. 37, 2001, 99–166CrossRefGoogle Scholar
  2. [2]
    Moes N., Dolbow J., Belytschko T., A finite element method for crack growth without remeshing, Int. J. Numer. Meth. Eng., Vol. 46, 1999, 131–150zbMATHCrossRefGoogle Scholar
  3. [3]
    Zi G., Rabczuk T., Wall W., Extended Meshfree Methods without Branch Enrichment for Cohesive Cracks, Comput. Mech., Vol. 40, 2007, 367–382zbMATHCrossRefGoogle Scholar
  4. [4]
    Silling, S.A., Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, J. Mech. Phys. Solid, Vol. 48, 2000, 175–209MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Silling S.A, Epton M., Weckner O., Xu J., et al., Peridynamics States and Constitutive Modeling, J. Elasticity, Vol. 88, 2007, 151–184MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Kilic B., Peridynamic Theory for Progressive Failure Prediction in Homogeneous and Heterogeneous Materials, Ph.D. dissertation, Department of Aerospace and Mechanical Engineering, Univ. Arizona, Tucson, Arizona, 2008Google Scholar
  7. [7]
    Silling S.A., Dynamic Fracture Modeling with a Meshfree Peridynamic Code, Second MIT Conference on Computational Fluid and Solid Mechanics, edited K.J. Bathe, Elsevier, Amsterdam, 2003, 641–644Google Scholar
  8. [8]
    Silling S.A., Askari, E., Peridynamic Modeling of Impact Damage, PVP, Vol. 489, edited by F.J. Moody, American Society of Mechanical Engineers, 2004, 197–205Google Scholar
  9. [9]
    Silling S.A., Askari, E., A Meshfree Method Based on the Peridynamic Model of Solid Mechanics, Computers and Structures, Vol. 83, 2005, 1526–1535CrossRefGoogle Scholar
  10. [10]
    Gerstle W., Sau N., Silling S., Peridynamic modeling of concrete structures, Nucl. Eng. Des., Vol. 237,Issues 12–13, July 2007, 1250–1258CrossRefGoogle Scholar
  11. [11]
    Silling S.A., Bobaru F., Peridynamic Modeling of Membranes and Fibers, Int. J. Non. Lin. Mech., Vol. 40, 2005, 395–409zbMATHCrossRefGoogle Scholar
  12. [12]
    Askari E., Xu J., Silling S., Peridynamic Analysis of Damage and Failure in Composites, 44th AIAA/ASME/ASCE/AHS/ASC Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, AIAA 2006-88Google Scholar
  13. [13]
    Colavito K.W., Kilic B., Celik E., Madenci E., Effect of Void Content on Stiffness and Strength of Composites by a Peridynamic Analysis and Static Indentation Test, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, 2007, Paper No. 2007-2251Google Scholar
  14. [14]
    Xu J., Askari A., Weckner O., Razi H., Silling S., Damage and Failure Analysis of Composite Laminates under Biaxial Loads, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, 2007, AIAA 2007-2315Google Scholar
  15. [15]
    Warren T.L., Silling S.A., Askari A., Weckner O., et al., A Non-ordinary State-based Peridynamic Method to Model Solid Material Deformation and Fracture, Int. J. Solid Struct., Vol. 46, 2009, 1186–1195zbMATHCrossRefGoogle Scholar
  16. [16]
    Foster J.T., Silling S.A., Chen W.W., Viscoplasticity Using Peridynamics, Sandia Report, SAND2008-7835, 2008Google Scholar
  17. [17]
    Kilic B., Agwai A., Madenci E., Peridynamic Theory for Progressive Damage Prediction in Centre-Cracked Composite Laminates, Compos. Struct., Vol. 90,Issue 2, 2009, 141–151CrossRefGoogle Scholar
  18. [18]
    Kilic B., Madenci E., Structural Stability and Failure Analysis Using Peridynamic Theory, Int. J. Non. Lin. Mech., Vol. 44,Issue 8, 2009, 845–854zbMATHCrossRefGoogle Scholar
  19. [19]
    Gálvez J.C., Elices M., Guinea G.V., Planas J., Mixed mode fracture of concrete under proportional and nonproportional loading, Int. J. Fract., 94: 267–284, 1998CrossRefGoogle Scholar
  20. [20]
  21. [21]
    Ha Y.D., Bobaru F., Characteristics of dynamic brittle fracture captured with peridynamics, Eng. Fract. Mech., Vol. 78, 2011, 1156–1168CrossRefGoogle Scholar
  22. [22]
    Demmie P.N., Silling S.A., An approach to modeling extreme loading of structures using peridynamics, J. Mech. Mater. Struct., Vol. 2, 2007, 1921–1945CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Erkan Oterkus
    • 1
  • Ibrahim Guven
    • 2
  • Erdogan Madenci
    • 2
  1. 1.Department of Naval Architecture & Marine EngineeringUniversity of StrathclydeGlasgowUK
  2. 2.Department of Aerospace and Mechanical EngineeringThe University of ArizonaTucsonUK

Personalised recommendations