Skip to main content
Log in

Monte Carlo simulations for optimization of neutron shielding concrete

  • Research Article
  • Published:
Central European Journal of Engineering

Abstract

Concrete is one of the main materials used for gamma and neutron shielding. While in case of gamma rays an increase in density is usually efficient enough, protection against neutrons is more complex. The aim of this paper is to show the possibility of using the Monte Carlo codes for evaluation and optimization of concrete mix to reach better neutron shielding. Two codes (MCNPX and SPOT — written by authors) were used to simulate neutron transport through a wall made of different concretes. It is showed that concrete of higher compressive strength attenuates neutrons more effectively. The advantage of heavyweight concrete (with barite aggregate), usually used for gamma shielding, over the ordinary concrete was not so clear. Neutron shielding depends on many factors e.g. neutron energy, barrier thickness and atomic composition. All this makes a proper design of concrete as a very important issue for nuclear power plant safety assurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szymendera L., Water-Concrete Shielding Systems for PWR, Rep. INR 1528/IX/PR/B, Warsaw, 1974

  2. Okuno K., Kawai M., Yamada H., Development of novel neutron shielding concrete, Nucl. Technol., 168(2), 2009, pp. 545–552

    Google Scholar 

  3. Gallego E., Lorente A., Vega-Carrillo H.R., Testing of a high-density concrete as neutron shielding material, Nucl. Technol., 168(2), 2009, pp. 399–404

    Google Scholar 

  4. X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos National Laboratory (2003)

  5. Szymendera L., Wincel K., Sobolewska L. et al, SAMSY: A one-dimensional improved shielding code, User’s manual, INR 1691, 1971

  6. Computer Code Collection, CCC-225, ANISN W. ORNL, USA

  7. Computer Code Collection, CCC-226, DOT. ORNL, USA

  8. The MORSE code — A Multigroup Neutron and Gamma-Ray Monte Carlo Transport Code, ORNL — 4585 USA

  9. Waters L.S., “MCNPXTM User’s manual — version 2.1.5”, Los Alamos National Laboratory, November 14, (1999)

  10. Seltborg P., Polanski A., Petrochenkov S., Lopatkin A., Gudowski W., Shvetsov V., Radiation shielding of high-energy neutrons in SAD, Nucl. Instr. Meth. Phys. Res., A550 2005, pp. 313–328, doi:10.1016/j.nima.2005.04.071

    Google Scholar 

  11. Sanchez R., Zmijarevic I., Coste-Delclaux M., Masiello E., Santandrea S., Martinolli E., Villate L., Schwartz N., Guler N., Apollo2 year 2010, Nucl. Eng. Technol., 42(5), 2010, pp. 474–499

    Article  Google Scholar 

  12. Calzada E., Grünauer F., Schillinger B., Türck H., Reusable shielding material for neutron- and gammaradiation, Nucl. Instr. Meth. Phys. Res, 2011 in press, doi:10.1016/j.nima.2010.12.239

  13. Polanski A., SŁowinski B., Wojciechowski A., Spallation neutron production in extended targets initiated by electronuclear reactions, XX Intern Baldin Seminar on High Energy Physics Problems, Dubna, October 4–10, 2010, p. 92

  14. Torres D.A., Mosteller R.D., Sweezy J.E., Comparison of MCNP5 and experimental results on neutron shielding effects for materials, 2004 Annual Meeting of the American Nuclear Society, June 13–17 2004, Pittsburgh, PA, LA UR-04-0122

  15. http://www.oecd-nea.org/janis/

  16. Czarnecki L., Łukowski P., Polymer-cement concretes, Cem. Lime Concr., 5, 2010, pp. 243–258

    Google Scholar 

  17. Akkurt I., Basyigit C., Kilincarslan S., Mavi B., Akkurt A., Radiation shielding of concretes containing different aggregates, Cem. Concr. Comp., 28, 2006, pp. 153–157, doi:10.1016/jcemconcomp.2005.09.006

    Article  Google Scholar 

  18. Sato S., Maegawa T., Yoshimatsu K., Sato K., Nonaka A., Takakura K., Ochiaia K., Konno Ch., Development of a low activation concrete shielding wall by multilayered structure for a fusion reactor, J. Nucl. Mater., 2011, in press, doi:10.1016/j.jnucmat.2010.12.302

  19. Sukegawa A.M., Anayama A., Okuno K., Sakurai S., Kaminaga A., Flexible heat resistant neutron shielding resin, J Nucl Mater, 2011, in press, doi:10.1016/j.jnucmat.2010.12.291

  20. Courard L., Michel F., Schwall D., Van der Wielen A., Piotrowski T., Garbacz A., Perez F., Bissonette B., Surfology: concrete surface evaluation prior to repair, Materials Characterisation IV, Comput Meth and Exp, WIT Press 2009 (Ed. A.A. Mammoli, C.A. Brebbia), pp. 407–416

  21. Bashter I.I., Calculation of radiation attenuation coefficients for shielding concretes, Ann Nucl Energy, 24(17), 1997, pp. 1389–1401

    Article  Google Scholar 

  22. Murata I., Yoshida S., Takahashi A., Effect of heterogeneities in heavy cncrete on shielding of fusion neutrons, Fusion Sci. Technol., 36(2), 1999, pp. 181–193

    Google Scholar 

  23. Lee C.-M., Lee Y.H., Lee K.J., Cracking effect on gamma-ray shielding performance in concrete structure, Prog in Nucl Energy, 49(4), 2007, pp. 303–312, doi:10.1016/j.pnucene.2007.01.006

    Article  Google Scholar 

  24. Regulation Prime Minister of Republic of Poland, The Radiation Dose Limits, J. of Law, 2005, No 20, pos. 168 (in Polish)

  25. ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection, Ann of the ICRP Vol. 21/1–3

  26. International Commission on Radiation Units and Measurements, Conversion coefficients for use in radiological protection against external radiation, ICRU Report 57, Bethesda, Maryland (1998)

  27. http://nuclear.itc.pw.edu.pl (accessed: June 28 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Piotrowski.

About this article

Cite this article

Piotrowski, T., Tefelski, D.B., Polański, A. et al. Monte Carlo simulations for optimization of neutron shielding concrete. cent.eur.j.eng 2, 296–303 (2012). https://doi.org/10.2478/s13531-011-0063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13531-011-0063-0

Keywords

Navigation