Skip to main content
Log in

Controlling the magnetorheological suspension of a vehicle seat including the biomechanics of the driver

  • Research Article
  • Published:
Central European Journal of Engineering

Abstract

This paper presents an original approach to the problem of controlling a magnetorheological suspension of a driver’s seat for optimal reduction of whole-body vibration. The concept consists in taking into consideration the individual personal features (biomechanical parameters) of the driver in the control process of a MR damper by using human generated signals. The proposed algorithm enables the adaptation of the suspension for an individual driver and specific road conditions. The actual research has focused on numerical simulations with a complex model of the human-seat-vehicle system. The human model representing a specific driver has been described by several biomechanical parameters such as masses of body structures, moments of inertia, and stiffness and damping of the spine, intervertebral discs, spinal muscles and ligaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallais L., Griffin M. J., Palmer K., Longitudinal epidemiological surveys in the United Kingdom of drivers exposed to whole-body vibration. Risks of Occupational Vibration Exposures VIBRISKS. FP5 Project No. QLK4-2002-02650 January 2003 to December 2006. Annex 16 to Final Technical Report, 2006

  2. Schwarze S., Notbohm G., Dupuis H., Hartung E., Dose-response relationships between whole body vibration and lumbar disk disease — a field study on 388 drivers of different vehicles, J. Sound Vib., Vol. 215(4), 1998, 613–628

    Article  Google Scholar 

  3. Bovenzi M., Zadini A., Self-reported low back symptoms in urban bus drivers exposed to whole-body vibration, Spine Vol. 17, 1992, 1048–1059

    Article  Google Scholar 

  4. Panjabi M.M., Andersson G.B.J, Jorneus L., et al., In vivo measurement of spinal column vibrations, J. Bone Joint Surg., Vol. 68A(5): 1986, 695–702

    Google Scholar 

  5. Pope M. H, Svensson M, Broman H., et al., Mounting of the transducer in measurements of segmental motion of the spine, J. Biomech., Vol. 19(8), 1986, 675–677

    Article  Google Scholar 

  6. Kitazaki S., Griffin M.J., Resonance behaviour of the seated human body and effects of posture, J. Biomech., Vol. 31, 1998, 143–149

    Article  Google Scholar 

  7. Yoshimura T., Nakai K., Tamaoki G., Multi-body dynamics modelling of seated human body under exposure to whole-body vibration, Ind. Health, Vol. 43, 2005, 441–447

    Article  Google Scholar 

  8. Fairley T.E., Griffin M.J., The apparent mass of the seated human body: vertical vibration, J. Biomech., Vol. 22, 1989, 81–94

    Article  Google Scholar 

  9. Sandover J., Dupuis H., A reanalysis of spinal motion during vibration, Ergonomics, Vol. 30, 1987, 975–985

    Article  Google Scholar 

  10. Izambert O., Mitton D., Thourot M., Lavaste F., Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system, Eur. Spine J., Vol. 12(6), 2003, 562–566

    Article  Google Scholar 

  11. Hagena. F.W., Wirth C. J., Piehler J. et al., In-vivo experiments on the response of the human spine to sinusoidal Gz-vibration, AGARD Conference Proceedings 378, 1985, 1–12

    Google Scholar 

  12. Rakheja S., Afework Y., Sankar S., An analytical and experimental investigation of the driver-seatsuspension system, Vehicle System Dynamics, Vol. 23, 1994, 501–524

    Article  Google Scholar 

  13. Gundogdu O., Optimal seat and suspension design for a quarter car with driver model using genetic algorithms, Int. J. Ind. Ergon., Vol. 37, 2007, 327–332

    Article  Google Scholar 

  14. ISO 7962, Mechanical vibration and shock — mechanical transmissibility of the human body in the z direction, 1987

  15. Qassem W, Othman M.O., Abdul-Majeed S., The effects of vertical and horizontal vibrations on the human body, Med. Eng. Phys., Vol. 16(3), 1994, 151–61

    Article  Google Scholar 

  16. Goel V.K, Park H.S., Kong W.Z., Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. J. Biomech. Eng., Vol. 116, 1994, 377–83

    Article  Google Scholar 

  17. Kitazaki S., Griffin M.J., A modal analysis of whole body vertical vibration, using a finite element model of the human body, J. Sound Vib., Vol. 200(1), 1997, 83–103

    Article  Google Scholar 

  18. Dufner D.L., Schick T.E., John Deere Active Seat TM: A New Level of Seat Performance AgEng2002 Paper Number: 02-IE-002, Budapest 2002

  19. Valero B., Amirouche F., Mayton A., Pneumatic active suspension design for heavy vehicle seats and operator ride comfort. Proceedings of the First American Conference on Human Vibration June 5–7, 2006 Morgantown, West Virginia, DHHS (NIOSH) Publication No. 2006-140 June, 2006, 38–39

  20. Perisse J., Jezequel L., An Original Feedback Control with a Reversible Electromechanical Actuator Used as an Active Isolation System for a Seat Suspension. Part I: Theoretical Study, Vehicle System Dynamics, Vol. 34, 2000, 305–331

    Article  Google Scholar 

  21. Ballo I., Power Requirement of Active Vibration Control Systems, Vehicle System Dynamics, Vol. 24(9), 1995, 683–694

    Article  Google Scholar 

  22. Karnopp D., Crosby M.J., Harwood R.A., Vibration control using semi-active force generators, J. Eng. Ind., Vol. 96, 1974, 619–626

    Article  Google Scholar 

  23. Karnopp D., Active damping in road vehicle suspension systems, Vehicle System Dynamics, Vol. 12, 1983, 291–316

    Article  Google Scholar 

  24. Wu X., Griffin M.J., A Semiactive Control Policy to Reduce the Occurrence and Severity of End-Stop Impacts in a Suspension Seat with an Electrorheological Fluid Damper, J. Sound Vib., Vol. 203(5), 1997, 781–793

    Article  Google Scholar 

  25. Jolly M.R., Bender J.W., Carlson J.D, Properties and Applications of Commercial Magnetorheological Fluids: Proc. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, San Diego, CA, 1998

  26. Dorato P., Abdallah C., Cerone V., Linear Quadratic Control: An Introduction. Prentice Hall, Englewood Cliffs, N.J., 1994

    Google Scholar 

  27. Song X., Ahmadian M., Study of Semiactive Adaptive Control Algorithms with Magneto-Rheological Seat Suspension. In: 2004 SAE World Congress, Detroit, Michigan, March 8–11, 2004 SAE International 2004-01-1648, 2004

  28. Lee Y., Jeon D.Y., A Study on the Vibration Attenuation of a Driver Seat Using an MR Fluid Damper, J. Intell. Mater. Syst. Struct., Vol. 13(7/8), 2002, 437–441

    Article  Google Scholar 

  29. Han Y.M., Nam M.H., Han S.S., Lee H.G. et. al., Vibration Control Evaluation of a Commercial Vehicle Featuring MR Seat Damper, J. Intell. Mater. Syst. Struct., Vol. 13(9), 2002, 575–579

    Article  Google Scholar 

  30. Hinz, B., Seidel, H., The nonlinearity of the human body’s dynamic response during sinusoidal whole body vibration, Ind. Health, Vol. 25(4), 1987, 169–181

    Article  Google Scholar 

  31. Mansfield N.J., Griffin M.J., Non-linearities in apparent mass and transmissibility during exposure to whole-body vertical vibration, J. Biomech., Vol. 33, 2000, 933–41

    Article  Google Scholar 

  32. Paddan G.S., Griffin M.J., A review of the transmission of translational seat vibration to the head, J. Sound Vib., Vol. 215(4) 1998, 863–882

    Article  Google Scholar 

  33. Gagorowski A., The method of the synthesis of mechatronic suspensions of vehicles seats from the point of view of the minimization of the vibrations influence on the human. PhD Thesis, Warsaw University of Technology, Faculty of Transport, Warsaw, Poland, 2007

    Google Scholar 

  34. Choromanski W., Gagorowski A., New concepts in the design of intelligent mechatronic vehicles seats. Proceedings of IAVSD’09, 21st International Symposium on Dynamics of Vehicles on Roads and Tracks, 17–21 August, 2009, KTH, Stockholm, Sweden

  35. Gagorowski A., Study on magnetorheological damper for vehicle seat suspension, Scientic Works of Warsaw University of Technology, series Transport, Vol. 71, 2009, 43–56

    Google Scholar 

  36. Gagorowski A., Simulation study on stiffness of suspension seat in the aspect of the vibration assessment affecting a vehicle driver, Logistics and Transport, Vol. 2(11), 2010, 55–62

    Google Scholar 

  37. Yao G.Z., Yap F.F., Chen G., Li W.H., et al., MR damper and its application for semi-active control of vehicle suspension system, Mechatronics, Vol. 12, 2002, 963–973

    Article  Google Scholar 

  38. Lai, C.Y. Liao W.H., Vibration Control of a Suspension System via a Magnetorheological Fluid Damper. J. Vib. Contr., Vol. 8, 2002, 527–547

    Article  Google Scholar 

  39. Li W.H, Yao G.Z., Chen G., Yeo S.H., et al., Testing and steady state modeling of a linear MR damper under sinusoidal loading, Journal Smart Material Structures, Vol. 9(1), 2000, 95–102

    Article  Google Scholar 

  40. ISO 2631-1:1997, Mechanical vibration and shock — evaluation of human exposure to whole-body vibration, Part 1, General Requirements, International Standards Office, ISO, Switzerland, Geneva, 1997

  41. ISO 8041:2005, Human response to vibrationmeasuring instrumentation, International Standards Office, ISO, Switzerland, Geneva, 2005

  42. Nagai M., Yoshida H., Tohtake T., Suzuki Y., Coupled vibration of passenger and lightweight car-body in consideration of human-body biomechanics, Vehicle System Dynamics, Vol. 44, Supplement, 2006, 601–611

    Article  Google Scholar 

  43. Campbell-Kyureghyan N., Jorgensen M., Burr D., Marras W., The prediction of lumbar spine geometry: method development and validation, Clin. Biomech., Vol. 20(5), 2005, 455–464

    Article  Google Scholar 

  44. Boyle, J.W. Jeffrey, Milne N., et. al., Influence of age on cervicothoracic spinal curvature: An ex vivo radiographic survey, Clin. Biomech., Vol. 17, Issue 5, 2002 361–36

    Article  Google Scholar 

  45. Lee M., Stmen G.P, Crosbi J., Higgs R.J., Variations in posteroanterior stiffness in the thoracolumbar spine: preliminary observations and proposed mechanisms, Physical Therapy, Vol. 78(12), 1998, 1277–1287

    Google Scholar 

  46. Colloca Ch.J., Keller T.S., Peterson T.K., Seltzer D.E., Comparison of dynamic posteroanterior spinal stiffness to plain film radiographic images of Lumbar Disk height, J. Manipulative Physiol. Therapeut., Vol. 26(4), 2003, 233–241

    Article  Google Scholar 

  47. Christopher J., Colloca D.C., Tony S. et al., Comparison of dynamic posteroanterior spinal stiffness to plain film radiographic images of lumbar disk height, J. Manipulative Physiol. Therapeut., 2003

  48. Solomonow M., Zhou B.H., Harris M. et al., The ligamento-muscular stabilizing system of the spine, Spine, Vol. 23, 1998, 2552–2562

    Article  Google Scholar 

  49. Wilson S. E., Analysis of the forces on the spine during a fall with application towards predicting vertebral fracture risk PhD thesis, Massachusetts Institute of Technology, Harvard-MIT Division of Health Sciences and Technology, 1999

  50. Thompson, R., Pearcy, M., Downing, K., et al., Disc lesions and the mechanics of the intervertebral joint complex, Spine, Vol. 25(23), 2000, 3026–3035

    Article  Google Scholar 

  51. Spencer, B.F., Dyke, S.J., Sain, M.K., Carlson, J.D., Phenomenological Model of a Magnetorheological Damper, ASCE J. Eng. Mech., Vol. 123, 1996, 230–238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Gągorowski.

About this article

Cite this article

Gągorowski, A. Controlling the magnetorheological suspension of a vehicle seat including the biomechanics of the driver. cent.eur.j.eng 2, 264–278 (2012). https://doi.org/10.2478/s13531-011-0061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13531-011-0061-2

Keywords

Navigation