Skip to main content

Brief review on PE method application to propagation channel modeling in sea environment

Abstract

This work provides an introduction to one of the most widely used advanced methods for wave propagation modeling, the Parabolic Equation (PE) method, with emphasis on its application to tropospheric radio propagation in coastal and maritime regions. The assumptions of the derivation, the advantages and drawbacks of the PE, the numerical methods for solving it, and the boundary and initial conditions for its application to the tropospheric propagation problem are briefly discussed. More details are given for the split-step Fourier-transform (SSF) solution of the PE. The environmental input to the PE, the methods for tropospheric refractivity profiling, their accuracy, limitations, and the average refractivity modeling are also summarized. The reported results illustrate the application of finite element (FE) based and SSF-based solutions of the PE for one of the most difficult to treat propagation mechanisms, yet of great significance for the performance of radars and communications links working in coastal and maritime zones — the tropospheric ducting mechanism. Recent achievements, some unresolved issues and ongoing developments related to further improvements of the PE method application to the propagation channel modeling in sea environment are highlighted.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Bean B.R., Dutton E.J., Radio meteorology, Dover Publications, New York, 1966

    Google Scholar 

  2. [2]

    Kerr D.E. (Ed.), Propagation of short radio waves, Peninsula Publishing, Los Altos, 1988

    Google Scholar 

  3. [3]

    Reddy L.R.G., Reddy B.M., Sea breeze signatures on line-of-sight microwave links in tropical coastal areas, Radio Sci., 2007, 42, doi:10.1029/2006RS003545

  4. [4]

    Olsen R.L., Tjelta T., Worldwide techniques for predicting the multipath fading distribution on terrestrial LOS links: background and results of tests, IEEE T. Antenn. Propag., 1999, 47, 157–170

    Article  Google Scholar 

  5. [5]

    Olsen R.L., Tjelta T., Martin L., Segal B., Worldwide techniques for predicting the multipath fading distribution on terrestrial LOS links: comparison with regional techniques, IEEE T. Antenn. Propag., 2003, 51, 23–30

    Article  Google Scholar 

  6. [6]

    ITU-R P.453-9, The radio refractive index: its formula and refractivity data, ITU, 2003

  7. [7]

    Babin S.M., Young G.S., Carton J.A., A new model of the oceanic evaporation duct, J. Appl. Meteorol., 1997, 36, 193–204

    Article  Google Scholar 

  8. [8]

    Atkinson B.W., Li J.-G., Plant R.S., Numerical modeling of the propagation environment in the atmospheric boundary layer over the Persian gulf, J. Appl. Meteorol., 2001, 40, 586–603

    Article  Google Scholar 

  9. [9]

    Geernaert G.L., On the evaporation duct for inhomogeneous conditions in coastal regions, J. Appl. Meteorol. Clim., 2007, 46, 538–543

    Article  Google Scholar 

  10. [10]

    Mesnard F., Sauvageot H., Climatology of anomalous propagation radar echoes in a coastal area, J. Appl. Meteorol. Clim., 2010, 49, 2285–2300

    Article  Google Scholar 

  11. [11]

    Anderson K.D., Radar detection of low-altitude targets in a maritime environment, IEEE T. Antenn. Propag., 1995, 43, 609–613

    Article  Google Scholar 

  12. [12]

    Marshall R.E., Wiss V.R., Thornton W.D., Horgan K.H., Multi-wavelength radar performance modeling during an extreme clear air propagation event over the Persian gulf, In: Proceedings of the 4th European Conference on Antennas & Propagation, EuCap’2010 (April 12–16, 2010, Barcelona, Spain), 2010, 1576–1580

  13. [13]

    Bech J., Sairouni A., Codina B., Lorente J., et al., Weather radar anaprop conditions at a Mediterranean coastal site, Phys. Chem. Earth. Pt B, 2000, 25, 829–832

    Article  Google Scholar 

  14. [14]

    Ryzhkov A.V., Zrnic D.S., Polarimetric rainfall estimation in the presence of anomalous propagation, J. Atmos. Ocean. Tech., 1998, 15, 1320–1329

    Article  Google Scholar 

  15. [15]

    ITU-R P.452-11, Prediction procedure for the evaluation of microwave interference between stations on the surface of the Earth at frequencies above about 0.7 GHz, ITU, 2003

  16. [16]

    Kerans A., Kulessa A.S., Lensson E., French G., et al., Implications of the evaporation duct for microwave radio path design over tropical oceans in Northern Australia, In: Proceedings of Workshop on the Applications of Radio Science, WARS’2002 (February 20–22, 2002, Leura, Australia), 2002, paper F-3

  17. [17]

    Sirkova I., Mikhalev M., Influence of tropospheric duct parameters changes on microwave path loss, In: Proceedings of the XXXVIII International Scientific Conference on Information, Communication & Energy Systems & Technologies, ICEST’2003, (October 16–18, 2003, Sofia, Bulgaria), 2003, 108–111

  18. [18]

    Milas V.F., Constantinou PH., Interference environment between high altitude platform networks (HAPN), geostationary (GEO) satellite and wireless terrestrial systems, Wireless. Pers. Commun., 2005, 32, 257–274

    Article  Google Scholar 

  19. [19]

    Douchin N., Bolioli S., Christophe F., Combes P., Theoretical study of the evaporation duct effects on the satellite-to ship radio links near the horizon, IEE Proc.-H, 1994, 141, 272–278

    Google Scholar 

  20. [20]

    Sen S., Nehorai A., OFDM MIMO radar with mutual-information waveform design for low-grazing angle tracking, IEEE T Signal Proces., 2010, 58, 3152–3162

    Article  MathSciNet  Google Scholar 

  21. [21]

    Lee W.C.Y., Mobile communications design fundamentals, John Wiley & Sons, 1993

  22. [22]

    von Engeln A., Teixeira J., A ducting climatology derived from ECMWF global analysis fields, J Geophys. Res., 2004, 109, doi:10.1029/2003JD004380

  23. [23]

    Hitney H.V., Richter J.H., Pappert R.A., Anderson K.D., et al., Tropospheric radio propagation assessment, P. IEEE, 1985, 73, 265–283

    Article  Google Scholar 

  24. [24]

    Lopez, PH., A 5-yr 40-km-resolution global climatology of superrefraction for ground-based weather radars, J. Appl. Meteorol. Clim., 2009, 48, 89–110

    Article  Google Scholar 

  25. [25]

    von Engeln A., Nedoluha G., Teixeira J., An analysis of the frequency and distribution of ducting events in simulated radio occultation measurements based on ECMWF fields, J GEOPHYS RES, 2003, 108, doi:10.1029/2002JD003170

  26. [26]

    Mentes S.S., Kaymaz Z., Investigation of surface duct conditions over Istanbul, Turkey, J. Appl. Meteorol. Clim., 2007, 46, 318–337

    Article  Google Scholar 

  27. [27]

    Gunashekar S.D., Warrington E.M., Siddle D.R., Valtr P., Signal strength variations at 2 GHz for three sea paths in the British Channel islands: detailed discussion and propagation modeling, Radio Sci., 2007, 42, doi:10.1029/2006RS003617

  28. [28]

    Willis M.J., Craig K.H., Results from a long term propagation measurement campaign, In: Proceedings of the 2nd European Conference on Antennas & Propagation, EuCap’2007 (November 11–16, 2007, Edinburgh, UK), 2007, 138–145

  29. [29]

    Gunashekar S.D., Warrington E.M., Siddle D.R., Long-term statistics related to evaporation duct propagation of 2 GHz radio waves in the English Channel, Radio Sci., 2010, 45, doi:10.1029/2009RS004339

  30. [30]

    Lystad S.L., Improved clear-air refractivity parameters and atmospheric description using highresolution radiosondes, In: Proceedings of the XXVIIth URSI General Assembly (August 17–24, 2002, Maastricht, Netherlands), 2002, F1.0.5

  31. [31]

    Essen H., Fuchs H.-H., Microwave and millimeterwave propagation within the marine boundary layer, In: German Microwave Conference (GeMiC), (March 28–30, 2006 Karlsruhe Germany), 2006, paper 10a-3

  32. [32]

    Heemskerk E., RF propagation measurement and model validation during RF/IR synergy trial VAMPIRA, In: Proceedings of SPIE 5981, Optics in atmospheric propagation & adaptive systems VIII (September 20–21, 2005, Bruges, Belgium), 2005, 598107.1–598107.12

  33. [33]

    Levy M., Parabolic equation methods for electromagnetic wave propagation, IEE electromagnetic waves series 45, UK, 2000

  34. [34]

    Kuttler J.R., Dockery G.D., Theoretical description of the parabolic approximation Fourier split-step method of representing electromagnetic propagation in the troposphere, Radio Sci., 1991, 26, 381–393

    Article  Google Scholar 

  35. [35]

    Brekhovskikh L.M., Waves in layered media, 2nd ed., Academic Press, New York, 1980

    MATH  Google Scholar 

  36. [36]

    Baumgartner G.B., Hitney H.V., Pappert R.A., Duct propagation modeling for the Integrated Refractive Effects Prediction System (IREPS), IEE Proc.-F, 1983, 130, 630–642

    Google Scholar 

  37. [37]

    Craig K.G., Levy M.F., Parabolic equation modeling of the effects of multipath and ducting on radar systems, IEE Proc., 1991, 138, 153–162

    Google Scholar 

  38. [38]

    Awadallah R.S., Gehman J.Z., Kuttler J.R., Newkirk M.H., Modeling radar propagation in threedimensional environments”, J. Hopkins Apl. Tech. D, 2004, 25, 101–111

    Google Scholar 

  39. [39]

    Atkinson B.W., Zhu M., Coastal effects on radar propagation in atmospheric ducting conditions, Meteorol. Appl., 2006, 13, 53–62

    Article  Google Scholar 

  40. [40]

    Sirkova I., Mikhalev M., Parabolic-equation-based study of ducting effects on microwave propagation, Microw. Opt. Tech. Lett., 2004, 42, 390–394

    Article  Google Scholar 

  41. [41]

    Apaydın G., Sevgi L., FEM-based surface wave multimixed-path propagator and path loss predictions, IEEE Antenn. Wireless Propag., 2009, 8, 1010–1013

    Article  Google Scholar 

  42. [42]

    Apaydin G., Sevgi L., Numerical investigations of and path loss predictions for surface wave propagation over sea paths including hilly island transitions, IEEE T Antenn. Propag., 2010, 58, 1302–1314

    Article  MathSciNet  Google Scholar 

  43. [43]

    Sirkova I., Mikhalev M., Parabolic wave equation method applied to the tropospheric ducting propagation problem — a survey, Electromagnetics, 2006, 26, 155–173

    Article  Google Scholar 

  44. [44]

    Awadallah R.S., Rough surface scattering and propagation over rough terrain in ducting environments, PhD thesis, Virginia Polytechnic Institute & State University, Blacksburg, USA,1998

    Google Scholar 

  45. [45]

    Barrios A., A terrain parabolic equation model for propagation in the troposphere, IEEE T Antenn. Propag., 1994, 42, 90–98

    Article  Google Scholar 

  46. [46]

    Dockery G.D., Development and use of electromagnetic parabolic equation propagation models for U.S. navy applications, J. Hopkins Apl. Tech. D, 1998, 19, 283–292

    Google Scholar 

  47. [47]

    Donohue D.J., Kuttler J.R., Modeling radar propagation over terrain, J. Hopkins Apl. Tech. D, 1997, 18, 279–287

    Google Scholar 

  48. [48]

    Kukushkin A., Radio wave propagation in the marine boundary layer, Wiley-VCH Verlag Gmbh& co., 2004

  49. [49]

    Ruxton A.B., Woods G.S., Gigan G., Huddlestone-Holmes C.R., Real-time environment monitoring of the Great Barrier Reef, International Journal of Environmental Technology & Management, 2009, 10, 26–35

    Article  Google Scholar 

  50. [50]

    Woods G.S., Ruxton A., Huddlestone-Holmes C., Gigan G., High-capacity, long-range, over ocean microwave link using the evaporation duct, IEEE J. Oceanic. Eng., 2009, 34, 323–330

    Article  Google Scholar 

  51. [51]

    Iqbal A., Jeoti V., Feasibility study of radio links using evaporation duct over sea off Malaysian shores, In: International Conference on Intelligent & Advanced Systems, ICIAS’2010 (June 15–17, 2010, Kuala Lumpur, Malaysia), 2010, paper CASO3-CM-03

  52. [52]

    Sirkova I., Path loss calculation for a surface duct statistics, In: Proceedings of the XLIV International Scientific Conference on Information, Communication & Energy Systems & Technologies, ICEST’2009 (June 25–27, 2009, Veliko Tarnovo, Bulgaria), 2009, pp. 53–56

  53. [53]

    Leontovich M.A., Fock V.A., Solution of the problem of propagation of electromagnetic waves along the earth’s surface by the method of parabolic equation, J. Phys. — USSR, 1946, 10, 13–23

    MathSciNet  Google Scholar 

  54. [54]

    Hardin R.H., Tappert F.D., Applications of the splitstep fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM REV, 1973, 15, 423

    Google Scholar 

  55. [55]

    Ko H.W., Sari J.W., Skura J.P., Anomalous microwave propagation through atmospheric ducts, J. Hopkins Apl. Tech. D, 1983, 4, 12–26

    Google Scholar 

  56. [56]

    Zelley Ch.A., Constantinou C.C., A threedimensional parabolic equation applied to VHF/UHF propagation over irregular terrain, IEEE T Antenn. Propag., 1999, 47, 1586–1596

    Article  Google Scholar 

  57. [57]

    Donohue D.J., Kuttler J.R., Propagation modeling over terrain using the parabolic wave equation, IEEE T Antenn. Propag., 2000, 48, 260–277

    Article  Google Scholar 

  58. [58]

    Janaswamy R., A curvilinear coordinate-based splitstep parabolic equation method for propagation prediction over terrain, IEEE T Antenn. Propag., 1998, 46, 1089–1097

    Article  Google Scholar 

  59. [59]

    Marcus S.W., A hybrid (finite difference-surface Green’s function) method for computing transmission losses in an inhomogeneous atmosphere over irregular terrain, IEEE T Antenn. Propag., 1992, 40, 1451–1458

    Article  Google Scholar 

  60. [60]

    Valtr P., Pechac P., Tropospheric Refraction Modeling Using Ray-Tracing and Parabolic Equation, Radioengineering, 2005, 14, 98–104

    Google Scholar 

  61. [61]

    Sirkova I., Hernandez-Figueroa H.E., Local transparent boundary condition applied to the modeling of tropospheric ducting propagation, Microw. Opt. Tech. Lett., 1999, 21, 343–346

    Article  Google Scholar 

  62. [62]

    Sirkova I., Comparison between a local and a nonlocal transparent boundary conditions applied to the tropospheric ducting propagation problem, Microw. Opt. Tech. Lett., 2000, 25, 44–47

    Article  Google Scholar 

  63. [63]

    Isaakidis S.A., Xenos T.D., Parabolic equation solution of tropospheric wave propagation using FEM, Prog. Electromagn. Res., 2004, 49, 257–271

    Article  Google Scholar 

  64. [64]

    Arshad K., Katsriku F.A., Lasebae A., An investigation of wave propagation over irregular terrain and urban streets using finite elements, In: Proceedings of the 6th WSEAS International Conference on Telecommunications & Informatics (March 22–24, 2007, Dallas, USA), 2007, 105–110

  65. [65]

    Apaydin G., Sevgi L., The split-step-Fourier and finite-element based parabolic-equation propagation prediction tools: canonical tests, systematic comparisons, and calibration, IEEE Antenn. Propag. M, 2010, 52, 66–79

    Article  Google Scholar 

  66. [66]

    Jin J., The finite element method in electromagnetics, Wiley-Interscience Publication, New York, 1993

    MATH  Google Scholar 

  67. [67]

    Dockery G.D., Modeling electromagnetic wave propagation in the troposphere using the parabolic equations, IEEE T Antenn. Propag., 1988, 36, 1464–1470

    Article  Google Scholar 

  68. [68]

    Kuttler J.R., Differences between the narrow-angle and wide-angle propagators in the split-step Fourier solution of the parabolic wave equation, IEEE T Antenn. Propag., 1999, 47, 1131–1140

    Article  Google Scholar 

  69. [69]

    Dockery G.D., Kuttler J.R., An improved impedanceboundary algorithm for Fourier split-step solutions of the parabolic wave equation, IEEE T Antenn. Propag., 1996, 44, 1592–1599

    Article  MATH  MathSciNet  Google Scholar 

  70. [70]

    Kuttler J.R., Janaswamy R., Improved Fourier transform methods for solving the parabolic wave equation, Radio Sci., 2002, 37, doi: 10.1029/2001RS002488

  71. [71]

    Schmidt R.O., Multiple emitter location and signal parameter estimation, IEEE T Antenn. Propag., 1986, 34, 276–280

    Article  Google Scholar 

  72. [72]

    Dockery G.D., Awadallah R.S., Freund D.E., Gehman J.Z., et al., An overview of recent advances for the TEMPER radar propagation model, In: Proceedings of IEEE RAD CONF (April 17–20, 2007, Boston, USA), 2007, 896–905

  73. [73]

    Barrios A.E., Patterson W.L., Sprague R.A., Advanced propagation model (APM) version 2.1.04 computer software configuration item (CSCI) documents, Spawar Systems Center San Diego Technical Digest 3214, 2007

  74. [74]

    Beilis A., Tappert F.D., Coupled mode analysis of multiple rough surface scattering, J. Acoust. Soc. Am., 1979, 66, 811–826

    Article  MATH  Google Scholar 

  75. [75]

    Miller A.R., Brown R.M., Vegh E., New derivation for the rough surface reflection coefficient and for the distribution of sea-wave elevations, IEE Proc.-H, 1984, 131, 114–116

    Google Scholar 

  76. [76]

    Ament W.S., Toward a theory of reflection by a rough surface, Proceedings IRE, 1953, 41, 142–146

    Article  MathSciNet  Google Scholar 

  77. [77]

    Freund D.E., Woods N.E., Ku H.-CH., Awadallah R.S., Forward radar propagation over a rough sea surface: a numerical assessment of the Miller-Brown approximation using a horizontally polarized 3 GHz line source, IEEE T Antenn. Propag., 2006, 54, 1292–1304

    Article  Google Scholar 

  78. [78]

    Hristov T.S., Anderson K.D., Friehe C.A., Scattering properties of the ocean surface: the Miller-Brown-Vegh model revisited, IEEE T Antenn. Propag., 2008, 56, 1103–1109

    Article  MathSciNet  Google Scholar 

  79. [79]

    Freund D.E., Woods N.E., Ku H.-CH., Awadallah R.S., The effects of shadowing on modelling forward radar propagation over a rough sea surface, Wave Random Complex, 2008, 18, 387–408

    Article  Google Scholar 

  80. [80]

    Fabbro V., Bourlier C., Combes P.F., Forward propagation modeling above Gaussian rough surfaces by the parabolic wave equation: introduction of the shadowing effect, Prog. Electromagn. Res., 2006, 58, 243–269

    Article  Google Scholar 

  81. [81]

    Berenger J., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 1994, 114, 185–200

    Article  MATH  MathSciNet  Google Scholar 

  82. [82]

    Popov A.V., Accurate modeling of transparent boundaries in quasi-optics, Radio Sci., 1996, 31, 1781–1790

    Article  Google Scholar 

  83. [83]

    Levy M.F., Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems, IEEE T Antenn. Propag., 1997, 45, 66–72

    Article  Google Scholar 

  84. [84]

    Zebic-Le Hyaric, A., A wide-angle nonlocal boundary conditions for the parabolic wave equation, IEEE T Antenn. Propag., 2002, 49, 916–922

    Article  Google Scholar 

  85. [85]

    Tsuji Y., Koshiba M., A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides, J. Lightwave Technol., 1996, 14, 217–222

    Article  Google Scholar 

  86. [86]

    Sirkova I., On transparent boundary conditions application to the tropospheric ducting propagation modeling, Journal of Applied Electromagnetism, 2000, 3, 59–78

    Google Scholar 

  87. [87]

    Awadallah R.S., Gehman J.Z., Kuttler J.R., Newkirk M.H., Effects of lateral terrain variations on tropospheric radar propagation, IEEE T Antenn. Propag., 2005, 53, 420–434

    Article  Google Scholar 

  88. [88]

    Ozgun O., Recursive two-way parabolic equation approach for modeling terrain effects in tropospheric propagation, IEEE T Antenn. Propag., 2009, 57, 2706–2714

    Article  Google Scholar 

  89. [89]

    Barrios A.E., Anderson K., Lindem G., Low altitude propagation effects — a validation study of the advanced propagation model (APM) for mobile radio applications, IEEE T Antenn. Propag., 2006, 54, 2869–2877

    Article  Google Scholar 

  90. [90]

    Valtr P., Pechac P., Kvicera V., Grabner M., A terrestrial multiple-receiver radio link experiment at 10.7 GHz — comparisons of results with parabolic equation calculations, Radioengineering, 2010, 19, 117–121

    Google Scholar 

  91. [91]

    Kulessa A.S., Woods G.S., Piper B., Heron M.L., Line-of-sight EM propagation experiment at 10.25 GHz in the tropical ocean evaporation duct, IEE Proc.-H, 1998, 145, 65–69

    Google Scholar 

  92. [92]

    Anderson K.D., Paulus R.A., Rough Evaporation Duct (RED) experiment, In: Proceedings of the Battlespace Atmospherics & Cloud Impact on Military Operations Conference, BACIMO (April 24–27, 2000, Fort Collins, USA), 2000, 4A-1

  93. [93]

    Anderson K., Brooks B., Caffrey P., Clarke A., et al., The RED experiment: an assessment of boundary layer effects in a trade winds regime on microwave and infrared propagation over the sea, B AM METEOROL SOC, 2004, 85, 1355–1365

    Article  Google Scholar 

  94. [94]

    Ryan F.J., User’s guide for the VTRPE (Variable Terrain Radio Parabolic Equation) computer model, Technical Report 1456, Naval Ocean Systems Center, San Diego, California, 1991

    Google Scholar 

  95. [95]

    Levy M.F., Craig K.H., TERPEM propagation package for operational forecasting with EEMS, In: Proceedings of the Battlespace Atmospherics Conference (December 3–5, 1996, San Diego, USA), 1996, 497–505

  96. [96]

    Claverie J., Mandine E., Hurtaud Y., Simulation of radar performances PREDEM — a new tool for the French navy, In: Proceedings of the Battlespace Atmospherics & Cloud Impact on Military Operations Conference, BACIMO (October 12–14, 2005, Monterey, USA), 2005, P8.03

  97. [97]

    Wayne L.P., Advanced Refractive Effects Prediction System (AREPS), Technical Document 3101, Spawar Systems Center San Diego, San Diego, USA, 2000

    Google Scholar 

  98. [98]

    Awadallah R.S., Lamar M.T., Kuttler J.R., An accelerated boundary integral equation scheme for propagation over the ocean surface, Radio Sci., 2002, 37, DOI: 10.1029/2001RS002536

  99. [99]

    Zaporozhets A.A., Application of vector parabolic equation method to urban radiowave propagation problems, IEE Proc.-H, 1999, 146, 253–256

    Google Scholar 

  100. [100]

    Zaporozhets A.A., Levy M.F., Bistatic RCS calculations with the vector parabolic equation method, IEEE T Antenn. Propag., 1999, 47, 1688–1696

    Article  Google Scholar 

  101. [101]

    Nunes da Silva M.A., Costa E., Liniger M., Analysis of the effects from lateral variations of irregular terrain based on a three-dimensional parabolic equation, In: Proceedings of the 4th European Conference on Antennas & Propagation, EuCap’2010 (April 12–16, 2010, Barcelona, Spain), 2010, P01P2–1

  102. [102]

    Lowry A.R., Rocken C., Sokolovskiy S.V., Anderson K.D., Vertical profiling of atmospheric refractivity from ground-based GPS, Radio Sci., 2002, 37, doi:10.1029/2000RS002565

  103. [103]

    Willitsford A., Philbrick C.R., Lidar description of the evaporative duct in ocean environments, Proceedings of SPIE 5885, Remote Sensing of the Coastal Oceanic Environment (July 31, 2005, San Diego, USA), 2005, 140–147

  104. [104]

    Vasudevan S., Anderson R.H., Kraut S., Gerstoft P., et al., Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter, Radio Sci., 2007, 42, doi:10.1029/2005RS003423

  105. [105]

    Yardim C., Gerstoft P., Hodgkiss W.S., Sensitivity analysis and performance estimation of refractivity from clutter techniques, Radio Sci., 2009, 44, doi:10.1029/2008RS003897

  106. [106]

    Goldhirsh J., Dockery D., Propagation factor errors due to the assumption of lateral homogeneity, Radio Sci., 1998, 33, 239–249

    Article  Google Scholar 

  107. [107]

    Ao C.O., Effect of ducting on radio occultation measurements: an assessment based on highresolution radiosonde soundings, Radio Sci., 2007, 42, doi:10.1029/2006RS003485.

  108. [108]

    Rotheram S., Radiowave propagation in the evaporation duct, Marconi Rev., 1974, 37, 18–40

    Google Scholar 

  109. [109]

    Paulus R.A., Practical application of an evaporation duct model, Radio Sci., 1985, 20, 887–896

    Article  Google Scholar 

  110. [110]

    Ivanov V.K., Shalyapin V.N., Levadnyi Yu.V., Determination of the evaporation duct height from standard meteorological data, Izvestiya, Atmospheric and Oceanic Physics, 2007, 43, 36–44 (in Russian)

    Article  Google Scholar 

  111. [111]

    Paulus R.A., Anderson K.D., Application of an evaporation duct climatology in the littoral, In: Proceedings of the Battlespace Atmospherics & Cloud Impact on Military Operations Conference, BACIMO (April 24–27, 2000, Fort Collins, USA), 2000, 4A–3

  112. [112]

    Benhmammouch O., Caouren N., Khenchaf A., Influence of sea surface roughness on electromagnetic waves propagation in presence of evaporation duct, In: Proceedings of International Radar Conference Surveillance for a Safer World, RADAR 2009 (October 12–16, 2009, Bordeaux, France), 2009, art. no. 543843

  113. [113]

    Levadnyi Yu.V., Ivanov V.K., Shalyapin V.N., Simulation of microwave propagation in evaporation duct over rough sea surface, Radiophysics & electronics, 2009, 14, 28–34 (in Russian)

    Google Scholar 

  114. [114]

    Zhao X., Huang S., Influence of sea surface roughness on the electromagnetic wave propagation in the duct environment, Radioengineering, 2010, 19, 601–605

    Google Scholar 

  115. [115]

    Sirkova I., Propagation factor and path loss simulation results for two rough surface reflection coefficients applied to the microwave ducting propagation over the sea, Progress in Electromagnetics Research M (PIERM), 2011, 17, 151–166

    Google Scholar 

  116. [116]

    Zhang J.-P., Wu Z.-S., Zhu Q.-L., Wang B., A fourparameter M-profile model for the evaporation duct estimation from radar clutter, Prog. Electromagn. Res., 2011, 114, 353–368

    Google Scholar 

  117. [117]

    Ivanov V.K., Shalyapin V.N., Levadny Y.V., Microwave scattering by tropospheric fluctuations in an evaporation duct, Radiophys. Quantum El., 2009, 52, 277–286

    Article  Google Scholar 

  118. [118]

    Frederickson P.A., Murphree J.T., Twigg K.L., Barrios A., A modern global evaporation duct climatology, In: Proceedings of the 2008 International Conference on Radar, RADAR’2008 (September 2–5, 2008, Adelaide, Australia), 2008, 292–296

  119. [119]

    Ding J.-L, Fei J.-F., Huang X.-G., Hu X.-H et al., Improvement to the evaporation duct model by introducing nonlinear similarity functions in stable conditions, J. Trop. Meteorol., 2011, 17, 64–72

    Google Scholar 

  120. [120]

    Brooks I.M., Air-sea interaction and spatial variability of the surface evaporation duct in a coastal environment, Geophys. Res Lett., 2001, 28, 2009–2012

    Article  Google Scholar 

  121. [121]

    Haack T., Wang Ch., Garrett S., Glazer A. et al., Mesoscale modeling of boundary layer refractivity and atmospheric ducting, J. Appl. Meteorol. Clim., 2010, 49, 2437–2457

    Article  Google Scholar 

  122. [122]

    Marshall R.E., Thornton W.D., Lefurjah G., Casey T.S., Modeling and simulation of notional future radar in non-standard propagation environments facilitated by mesoscale numerical weather prediction modeling, NAV ENG J, 2008, 120, 55–66

    Article  Google Scholar 

  123. [123]

    Recommendations and Reports of the CCIR, CCIR XVth Plenary Assembly (1986, Dubrovnik, Croatia), vol. V Propagation in non-ionized media, ITU, Geneva, 1986

  124. [124]

    Watson R.J., Coleman C.J., The use of signals of opportunity for the measurement of atmospheric refractivity, In: Proceedings of the 4th European Conference on Antennas and Propagation EuCAP’2010 (April 12–16, 2010, Barcelona, Spain), 2010

  125. [125]

    Tang J., Zhang L., Wolff R.S., Zhang W., Leveraging cognitive radios for effective communications over water, In: Proceedings of the 7th Annual IEEE Communications Society Conference on Sensor Mesh & Ad Hoc Communications & Networks, IEEE SECON’2010 (June 21–25, 2010, Boston, USA), IEEE, 2010

  126. [126]

    Barrios A., Considerations in the development of the Advanced Propagation Model (APM) for U.S. navy applications, In: Proceedings of the International Conference on Radar RADAR’2003 (September 3–5, 2003, Adelaide, Australia), 2003, pp. 77–82

  127. [127]

    Willis M., Craig K., Thomas N., Measurement data for improving ITU-R Recommendation P.1812, In: Proceedings of the 10th International Symposium on Advanced Radio Technologies ClimDiff’2008 (June 2–4, 2008, Boulder, USA), 2008, 50–57

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Irina Sirkova.

About this article

Cite this article

Sirkova, I. Brief review on PE method application to propagation channel modeling in sea environment. cent.eur.j.eng 2, 19–38 (2012). https://doi.org/10.2478/s13531-011-0049-y

Download citation

Keywords

  • Radio propagation channel modeling
  • Parabolic equation method
  • Tropospheric ducting
  • Numerical methods