Skip to main content

Oak decline in a southern Finnish forest as affected by a drought sequence

Abstract

We investigated the decline of a pedunculate oak (Quercus robur L.) forest growing on shallow soil at the northern distributional limit of the species in southern Finland, using the dendroclimatic approach. About 200-year-old trees in three vigour classes — healthy, declining and dead — were sampled in 2008. Annual tree-ring, earlywood and latewood widths were measured and chronologies were established. The tree-ring data were correlated with monthly and seasonal climate data. Radial increment of oaks was positively related to the June and July precipitations. This was expressed especially in total ring width and latewood width, whereas the earlywood was more influenced by the warmer winter and spring. Furthermore, the correlation between the current year earlywood width and the preceding year latewood width was higher than between the earlywood and latewood of the same year. The analyses showed that the dead oaks and part of the declining oaks had ceased growing during 2005–2007 after a decadelong summer drought series. This indicates a time lag in the oak dieback. The radial growth of the declining and the dead oaks had dropped already since the 1990s, while the healthy oaks had better longterm growth and higher adaptive capacity to climate variation.

This is a preview of subscription content, access via your institution.

References

  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A and Cobb N, 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259(4): 660–684, DOI 10.1016/j.foreco.2009.09.001.

    Article  Google Scholar 

  2. Andersson M, Milberg P and Bergman K-O, 2011. Low predeath growth rates of oak (Quercus robur L.) — Is oak death a long-term process induced by dry years? Annals of Forest Science 68(1): 159–168, DOI 10.1007/s13595-011-0017-y.

    Article  Google Scholar 

  3. Aniol RW, 1983. Tree-ring analysis using CATRAS. Dendrochronologia 1: 45–53.

    Google Scholar 

  4. Arend M, Kuster T, Günthardt-Goerg MS and Dobbertin M, 2011. Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology 31(3): 287–297, DOI 10.1093/treephys/tpr004.

    Article  Google Scholar 

  5. Askeyev OV, Tischin D, Sparks TH and Askeyev IV, 2005. The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. International Journal of Biometeorology 49(4): 262–266, DOI 10.1007/s00484-004-0233-3.

    Article  Google Scholar 

  6. Axelrod DI, 1983. Biogeography of oaks in the Arcto-Tertiary province. Annals of the Missouri Botanical Garden 70(4): 629–657, DOI 10.2307/2398982.

    Article  Google Scholar 

  7. Barklund P and Wahlström K, 1998. Death of oaks in Sweden since 1987. In: Cech TL, Hartman G, Tomiczek C, eds., Disease/environment interactions in forest decline. Proceedings of a workshop of the working party Disease/Environment Interactions in Forest Decline IUFRO 7.02.06, 16–21 March 1998. Federal Forest Research Centre, Vienna, Austria: 193.

    Google Scholar 

  8. Bigler C and Bugmann H, 2004. Predicting the time of tree death using dendrochronological data. Ecological Applications 14(3): 902–914, DOI 10.1890/03-5011.

    Article  Google Scholar 

  9. Biondi F and Waikul K, 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30(3): 303–311, DOI 10.1016/j.cageo.2003.11.004.

    Article  Google Scholar 

  10. Bridge MC, Gasson PE and Cutler DF, 1996. Dendroclimatological observations on trees at Kew and Wakehurst Place: event and pointer years. Forestry 69(3): 263–269, DOI 10.1093/forestry/69.3.263.

    Article  Google Scholar 

  11. Briffa KR and Cook ER, 1990. Methods of response function analyses. In: Cook ER and Kairiukstis LA, eds., Methods of dendrochronology: Applications in the environmental sciences. International Institute for Applied Systems Analysis/Kluwer Academic Publishers, Dordrecht: 240–247.

    Google Scholar 

  12. Briffa KR, Jones PD, Bartholin TS, Eckstein D, Schweingruber FH, Karlén W, Zetterberg P and Eronen M, 1992. Fennoscandian summers from AD 500: temperature changes on short and long timescales. Climate Dynamics 7(3): 111–119, DOI 10.1007/BF00211153.

    Article  Google Scholar 

  13. Briffa KR and Melvin TM, 2011. A closer look at regional curve standardization of tree-ring records: justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Swetnam TW, Diaz HF, eds., Dendroclimatology: progress and prospects. Springer, Dordrecht: 113–145.

    Chapter  Google Scholar 

  14. Bronisz A, Bijak S, Bronisz K and Zasada M, 2012. Climate influence on radial increment of oak (Quercus sp.) in central Poland. Geochronometria 39(4): 276–284, DOI 10.2478/s13386-012-0011-7.

    Article  Google Scholar 

  15. Catton HA, St George S and Remphrey WR, 2007. An evaluation of bur oak (Quercus macrocarpa) decline in the urban forest of Winnipeg, Manitoba, Canada. Arboriculture & Urban Forestry 33(1): 22–30.

    Google Scholar 

  16. Cedro A, 2007. Tree-ring chronologies of downy oak (Quercus pubescens), pedunculate oak (Q. robur) and sessile oak (Q. petraea) in the Bielinek Nature Reserve: Comparison of the climatic determinants of tree-ring width. Geochronometria 26: 39–45, DOI 10.2478/v10003-007-0005-2.

    Article  Google Scholar 

  17. Cherubini P, Fontana G, Rigling D, Dobbertin M, Brang P and Innes JL, 2002. Tree-life history prior to death: two fungal root pathogens affect tree-ring growth differently. Journal of Ecology 90(5): 839–850, DOI 10.1046/j.1365-2745.2002.00715.x.

    Article  Google Scholar 

  18. Cook ER, 1985. A time series analysis approach to tree ring standardization. PhD Dissertation, University of Arizona: 171pp.

    Google Scholar 

  19. Cook ER, 1987. The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin 47: 37–59.

    Google Scholar 

  20. Cook ER and Peters K, 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendrocli-matic studies. Tree-Ring Bulletin 41: 45–53.

    Google Scholar 

  21. Čufar K, De Luis M, Zupančič M and Eckstein D, 2008. A 548-year tree-ring chronology of oak (Quercus spp.) for southeast Slovenia and its significance as dating tool and climate archive. Tree-Ring Research 64(1): 3–15, DOI 10.3959/2007-12.1.

    Article  Google Scholar 

  22. Dahl E, 1998. The phytogeography of Northern Europe: British Isles, Fennoscandia and adjacent areas. Cambridge University Press, Cambridge: 297pp, DOI 10.1017/CBO9780511565182.

    Book  Google Scholar 

  23. Dickson RE and Tomlinson PT, 1996. Oak growth, development and carbon metabolism in response to water stress. Annals of Forest Science 53(2–3): 181–196, DOI 10.1051/forest:19960202.

    Google Scholar 

  24. Dobbertin M, 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. European Journal of Forest Research 124(4): 319–333, DOI 10.1007/s10342-005-0085-3.

    Article  Google Scholar 

  25. DoleŽal J, Mazůrek P and Klimešová J, 2010. Oak decline in southern Moravia: the association between climate change and early and late wood formation in oaks. Preslia 82(3): 289–306.

    Google Scholar 

  26. Drobyshev I, Anderson S and Sonesson K, 2007a. Crown condition dynamics of oak in southern Sweden 1988-1999. Environmental Monitoring and Assessment 134(1–3): 199–210, DOI 10.1007/s10661-007-9610-9.

    Article  Google Scholar 

  27. Drobyshev I, Linderson H and Sonesson K, 2007b. Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronolo-gia 24(2–3): 97–108, DOI 10.1016/j.dendro.2006.10.004.

    Article  Google Scholar 

  28. Drobyshev I, Niklasson M, Eggertsson O, Linderson H and Sonesson K, 2008. Influence of annual weather on growth of pedunculate oak in southern Sweden. Annals of Forest Science 65(5): 512, DOI 10.1051/forest:2008033.

    Article  Google Scholar 

  29. EUFORGEN, 2009. Distribution map of pedunculate oak (Quercus robur). WEB site: www.euforgen.org. Accessed 2013 March 25.

    Google Scholar 

  30. Faber-Langendoen D and Tester JR, 1993. Oak mortality in sand savannas following drought in East-Central Minnesota. Bulletin of the Torrey Botanical Club 120(3): 248–256, DOI 10.2307/2996989.

    Article  Google Scholar 

  31. Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG and Ulbrich U, 2004. The 2003 European summer heatwaves and drought — synoptic diagnosis and impacts. Weather 59(8): 209–216, DOI 10.1256/wea.73.04.

    Article  Google Scholar 

  32. Finnish Meteorological Institute, 2012. Terminen kasvukausi 2006 (The thermal growing season 2006). WEB site: http://ilmatieteenlaitos.fi/kasvukausi-2006. Accessed 2013 January 22 (in Finnish).

    Google Scholar 

  33. Friedrichs DA, Büntgen U, Frank DC, Esper J, Neuwirth B and Löffler J, 2009. Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiology 29(1): 39–51, DOI 10.1093/treephys/tpn003.

    Article  Google Scholar 

  34. Fritts HC, 1976. Tree Rings and Climate. Academic Press, London: 567pp.

    Google Scholar 

  35. Führer E, 1998. Oak decline in central Europe: a synopsis of hypotheses. In: McManus ML and Liebhold AM, eds., Proceedings: population dynamics, impacts, and integrated management of forest defoliating insects. USDA Forest Service, General Technical Report NE-247: 7–24.

    Google Scholar 

  36. García González I and Eckstein D, 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 23(7): 497–504, DOI 10.1093/treephys/23.7.497.

    Article  Google Scholar 

  37. Gibbs JN and Greig BJW, 1997. Biotic and abiotic factors affecting the dying back of pedunculate oak Quercus robur L. Forestry 70(4): 399–406, DOI 10.1093/forestry/70.4.399.

    Article  Google Scholar 

  38. Gori Y, Cherubini P, Camin F and La Porta N, 2013. Fungal root pathogen (Heterobasidion parviporum) increases drought stress in Norway spruce stand at low elevation in the Alps. European Journal of Forest Research 132(4): 607–619, DOI 10.1007/s10342-013-0698-x.

    Article  Google Scholar 

  39. Hartmann G, Blank R and Lewark S, 1989. Eichensterben in Norddeutschland. Verbreitung, Schadbilder, mögliche Ursachen (Oak decline in Northern Germany. Distribution, symptoms, probable causes). Forst und Holz 44(18): 475–487 (in German with English summary).

    Google Scholar 

  40. Helama S, Läänelaid A, Raisio J and Tuomenvirta H, 2009. Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant and Soil 319(1–2): 163–174, DOI 10.1007/s11104-008-9858-z.

    Article  Google Scholar 

  41. Helama S, Läänelaid A, Raisio J and Tuomenvirta H, 2012. Mortality of urban pines in Helsinki explored using tree ring and climate records. Trees — Structure and Function 26(2): 353–362, DOI 10.1007/s00468-011-0597-z.

    Article  Google Scholar 

  42. Hilasvuori E and Berninger F, 2010. Dependence of tree ring stable isotope abundances and ring width on climate in Finnish oak. Tree Physiology 30(5): 636–647, DOI 10.1093/treephys/tpq019.

    Article  Google Scholar 

  43. Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.

    Google Scholar 

  44. Holopainen M, Leino O, Kämäri H and Talvitie M, 2006. Drought damage in the park forests of the city of Helsinki. Urban Forestry & Urban Greening 4(2): 75–83, DOI 10.1016/j.ufug.2005.11.002.

    Article  Google Scholar 

  45. Honkanen J, 2009. Tammiston luonnonsuojelualueen ja rauhoitettujen luontotyyppien hoitoja käyttösuunnitelma 2010–2020 (Tammisto Nature Reserve and protected nature types conservation and landuse plan 2010–2020). Ympäristökeskus, Vantaan kaupunki: 12pp (in Finnish).

    Google Scholar 

  46. Hydrografinen toimisto, 1944. Vuosikirja 12 Årsbok 1937–1940 (Year-book 1937–1940). Valtioneuvoston kirjapaino, Helsinki: 118pp (in Finnish and Swedish).

    Google Scholar 

  47. Hydrografinen toimisto, 1948. Vuosikirja 13 Årsbok 1941–1945 (Yearbook 1941–1945). Valtioneuvoston kirjapaino, Helsinki: 123pp (in Finnish and Swedish).

    Google Scholar 

  48. Jones EW, 1959. Biological flora of the British Isles: Quercus L. Journal of Ecology 47(1): 169–222.

    Article  Google Scholar 

  49. Jönsson U, Jung T, Sonesson K and Rosengren U, 2005. Relationships between health of Quercus robur, occurrence of Phytophthora species and site conditions in southern Sweden. Plant Pathology 54(4): 502–511, DOI 10.1111/j.1365-3059.2005.01228.x.

    Article  Google Scholar 

  50. Jung T, Blaschke H and Oßwald W, 2000. Involvement of soilborne Phytophthora species in Central European oak decline and the effect of site factors on the disease. Plant Pathology 49(6): 706–718, DOI 10.1046/j.1365-3059.2000.00521.x.

    Article  Google Scholar 

  51. Kitin P, Funada R, Sano Y, Beeckman H and Ohtani J, 1999. Variations in the lengths of fusiform cambial cells and vessel elements in Kalopanax pictus. Annals of Botany 84(5): 621–632, DOI 10.1006/anbo.1999.0957.

    Article  Google Scholar 

  52. Kuusisto E, 2003. Paha kuivuus lisäsi jatkosodan ankeutta (Bad drought added to the Continuation War bleakness). Helsingin Sanomat 12.4.2003: C17 (in Finnish).

    Google Scholar 

  53. Kuusisto E, 2004. Kuvaus 1940-luvun poikkeuksellisesta kuivuudesta (A depiction of the exceptional dryness in the 1940s). In: Silander J and Järvinen A, eds., Vuosien 2002–2003 poikkeuksellisen kuivuuden vaikutukset (Effects of Severe Drought of 2002–2003). Suomen ympäristökeskus 731: 48 (in Finnish).

    Google Scholar 

  54. Läänelaid A, 2000. Five pine samples represent climate impact as well as eleven pines. University of Joensuu, Faculty of Forestry, Research Notes 108: 119–128.

    Google Scholar 

  55. Läänelaid A, Sohar K and Meikar T, 2008. Present state and chronology of oaks in an oak forest in Saaremaa Island, Estonia. Baltic Forestry 14(1): 34–43.

    Google Scholar 

  56. Landmann G and Dreyer E, eds., 2006. Impacts of drought and heat on forest. Synthesis of available knowledge, with emphasis on the 2003 event in Europe. Annals of Forest Science 63(6): 567–568, DOI 10.1051/forest:2006062.

    Google Scholar 

  57. Li M-H, Cherubini P, Dobbertin M, Arend M, Xiao W-F and Rigling A, 2013. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes. Plant Biology 15(SI1): 177–184, DOI 10.1111/j.1438-8677.2012.00579.x.

    Article  Google Scholar 

  58. Manion PD, 1981. Tree disease concepts. Prentice Hall, Englewood Cliff, New Jersey: 399pp.

    Google Scholar 

  59. Matisons R and Brūmelis G, 2012. Influence of climate on tree-ring and earlywood vessel formation in Quercus robur in Latvia. Trees — Structure and Function 26(4): 1251–1266, DOI 10.1007/s00468-012-0701-z.

    Article  Google Scholar 

  60. Matisons R, Elferts D and Brūmelis G, 2012. Changes in climatic signals of English oak tree-ring width and cross-section area of earlywood vessels in Latvia during the period 1900–2009. Forest Ecology and Management 279: 34–44, DOI 10.1016/j.foreco.2012.05.029.

    Article  Google Scholar 

  61. McCracken FI, 1985. Oak decline and mortality in the South. In: Proceedings, Third Symposion of Southeastern Hardwoods, Atlanta, 16–17 April 1985. USDA Forest Service, Dothan: 77–81.

    Google Scholar 

  62. Nola P, 1996. Climatic signal in earlywood and latewood of deciduous oaks from northern Italy. In: Dean JS, Meko DM, Swetnam TW, eds., Tree Rings, Environment and Humanity: Proceedings of the international conference, Radiocarbon. Department of Geosciences, University of Arizona, Tucson: 249–258.

    Google Scholar 

  63. Pedersen BS, 1998. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79(1): 79–93, DOI 10.2307/176866.

    Article  Google Scholar 

  64. Peñuelas J, Lloret F and Montoya R, 2001. Severe drought effects on Mediterranean woody flora in Spain. Forest Science 47(2): 214–218.

    Google Scholar 

  65. Pilcher JR and Gray B, 1982. The relationships between oak tree growth and climate in Britain. Journal of Ecology 70(1): 297–304, DOI 10.2307/2259880.

    Article  Google Scholar 

  66. Rainio RJ, 1977. Tammen levinneisyydestä läntisellä Uudellamaalla ja Turunmaan itäisemmissä osissa (On the distribution of oak (Quercus robur) in the southwestern-most parts of Finland). Silva Fennica 11(2): 127–135 (in Finnish with English summary).

    Article  Google Scholar 

  67. Repo T, Mononen K, Alvila L, Pakkanen TT and Hänninen H, 2008. Cold acclimation of pedunculate oak (Quercus robur L.) at its northernmost distribution range. Environmental and Experimental Botany 63(1–3): 59–70, DOI 10.1016/j.envexpbot.2007.10.023.

    Article  Google Scholar 

  68. Rinn F, 2003. TSAP-Win. Time series analysis and presentation for dendrochronology and related applications. Version 0.53 for Microsoft Windows. User Reference. Rinntech Heidelberg, Heidelberg: 91 pp.

    Google Scholar 

  69. Rozas V, 2001. Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Annals of Forest Science 58(3): 237–251, DOI 10.1051/forest:2001123.

    Article  Google Scholar 

  70. Rozas V, 2005. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Annals of Forest Science 62(3): 209–218, DOI 10.1051/forest:2005012.

    Article  Google Scholar 

  71. Rozas V and García González I, 2012. Too wet for oaks? Inter-tree competition and recent persistent wetness predispose oaks to rain-fall-induced dieback in Atlantic rainy forest. Global and Planetary Change 94–95: 62–71, DOI 10.1016/j.gloplacha.2012.07.004.

    Article  Google Scholar 

  72. Ruseckas J, 2006. Impact of climatic fluctuations on radial increment of English oak (Quercus robur L.). Ecologija 1: 16–24.

    Google Scholar 

  73. Santini A, Bottacci A and Gellini R, 1994. Preliminary dendroecologi-cal survey on pedunculate oak (Quercus robur L) stands in Tusca-ny (Italy). Annals of Forest Science 51(1): 1–10, DOI 10.1051/forest:19940101.

    Article  Google Scholar 

  74. Sass-Klaassen U, Sabajo CR and den Ouden J, 2011. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29(3): 171–175, DOI 10.1016/j.dendro.2011.01.002.

    Article  Google Scholar 

  75. Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C and Wilmking M, 2011. Drought matters — declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in northeastern Germany. Forest Ecology and Management 262(6): 947–961, DOI 10.1016/j.foreco.2011.05.026.

    Article  Google Scholar 

  76. Schweingruber FH, 2007. Wood structure and environment. Springer-Verlag, Berlin: 279pp.

    Google Scholar 

  77. Silander J and Järvinen EA, eds., 2004. Vuosien 2002–2003 poikkeuksellisen kuivuuden vaikutukset (Effects of Severe Drought of 2002–2003). Suomen ympäristö 731: 79pp (in Finnish with English abstract).

    Google Scholar 

  78. Siwecki R and Ufnalski K, 1998. Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Forest Pathology 28(2): 99–112, DOI 10.1111/j.1439-0329.1998.tb01171.x.

    Article  Google Scholar 

  79. Sonesson K, 1999. Oak decline in southern Sweden. Scandinavian Journal of Forest Research 14(4): 368–375, DOI 10.1080/02827589950152692.

    Article  Google Scholar 

  80. Starkey DA and Oak SW, 1989. Site factors and stand conditions associated with oak decline in southern upland hardwood forests. In: Rink G and Budelsky CA, eds., Proceedings of the Seventh Central Hardwoods Forest Conference, Carbondale, IL, 5–8 March 1989. USDA Forest Service, General Technical Report NC-132: 95–102.

    Google Scholar 

  81. Starkey DA, Oak SW, Ryan GW, Tainter FH, Redmond C and Brown HD, 1989. Evaluation of oak decline areas in the south. USDA Forest Service, Protection Report R8-PR 17: 39pp

    Google Scholar 

  82. Starkey DA, Oliveria F, Mangini A and Mielke M, 2004. Oak decline and red oak borer in the interior highlands of Arkansas and Missouri: natural phenomena, severe occurrences. In: Spetich MA, ed., Upland oak ecology symposium: history, current conditions, and sustainability. USDA Forest Service, General Technical Report SRS-73: 217–222.

    Google Scholar 

  83. Stewart MN, 1913. Relation of precipitation to tree growth. Monthly Weather Review 41(9): 1287–1297.

    Article  Google Scholar 

  84. Tesfa TK, Tarboton DG, Chandler DG and McNamara JP, 2009. Modeling soil depth from topographic and land cover attributes. Water Resources Research 45(10): W10438, DOI 10.1029/2008WR007474.

    Article  Google Scholar 

  85. Tessier L, Nola P and Serre-Bachet F, 1994. Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytologist 126(2): 355–367, DOI 10.1111/j.1469-8137.1994.tb03955.x.

    Article  Google Scholar 

  86. Thomas FM and Hartmann G, 1998. The rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.). Plant and Soil 203(1): 145–158, DOI 10.1023/A:1004305410905.

    Article  Google Scholar 

  87. Thomas FM, Blank R and Hartmann G, 2002. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology 2(4–5): 277–307, DOI 10.1046/j.1439-0329.2002.00291.x.

    Article  Google Scholar 

  88. Tuomenvirta H, 2004. Reliable estimation of climatic variations in Finland. Finnish Meteorological Institute Contributions 43: 1–79.

    Google Scholar 

  89. Wargo PM, 1996. Consequences of environmental stress on oak: predisposition to pathogens. Annals of Forest Science 53(2–3): 359–368, DOI 10.1051/forest:19960218.

    Google Scholar 

  90. Ympäristöraportoinnin asiantuntijatyöryhmä, 2004. Helsingin kaupungin ympäristöraportti 2003 (Helsinki City environmental report 2003). Environment Centre, City of Helsinki, Helsinki: 46pp (in Finnish).

    Google Scholar 

  91. Zang C, Pretzsch H and Rothe A, 2012. Size-dependent responses to summer drought in Scots pine, Norway spruce and common oak. Trees — Structure and Function 26(2): 557–569, DOI 10.1007/s00468-011-0617-z.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kristina Sohar.

About this article

Cite this article

Sohar, K., Helama, S., Läänelaid, A. et al. Oak decline in a southern Finnish forest as affected by a drought sequence. Geochron 41, 92–103 (2014). https://doi.org/10.2478/s13386-013-0137-2

Download citation

Keywords

  • dendroclimatology
  • mortality
  • tree rings
  • earlywood
  • latewood
  • Quercus robur L.