Geochronometria

, Volume 40, Issue 4, pp 341–347 | Cite as

ESR dose response of Al center measured in quartz samples from the Yellow River (China): Implications for the dating of Upper Pleistocene sediment

  • Pierre Voinchet
  • Gongming Yin
  • Christophe Falguères
  • Chunru Liu
  • Fei Han
  • Xuefeng Sun
  • Jean Jacques Bahain
Research Article
  • 45 Downloads

Abstract

The ESR dating method requires to describe the evolution of the ESR signal intensities vs. increasing gamma doses, then to extrapolate the equivalent dose of radiation received by the sample since its deposition using mathematical fitting. The function classically used to describe the growth curves of ESR aluminium signal in quartz was recently discussed and challenged for Lower Pleistocene sediments. In the present work, some alluvial sediments sampled in Upper Pleistocene fluvial terraces of the Yellow River system (China) permit us to test the application of another extrapolation function (linear + exponential) recently proposed for Lower Pleistocene sediments. The equivalent doses obtained here for the recent deposits of the Yellow River system and the corresponding ages are promising and indicate the potential of ESR to date quartz deposits from Upper Pleistocene times.

Keywords

ESR dating method quartz Upper Pleistocene equivalent dose determination exponential plus linear function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamiec G and Aitken M, 1998. Doserate conversion factor: update. Ancient TL 16: 37–50.Google Scholar
  2. Apers D, Debuyst R, De Cannière P, Dejehet F and Lombard E, 1981. A criticism of the dating by electron paramagnetic resonance (ESR) of the stalagmitic floors of the Caune de l’Arago at Tautavel. In: Absolute dating and Isotope Analysis in Prehistory — Methods and limits (eds) H. de Lumley and J. Labeyrie),pp 533–550, CNRS, Paris.Google Scholar
  3. Bahain JJ, Bahain J-J, Laurent M, Falguères C, Voinchet P, Farkh S and Tissoux H., 2002. Datation par résonance paramagnétique électronique (RPE) des formations fluviatiles pléistocènes et des gisements archéologiques ou paléontologiques associés. Quaternaire 13(2): 91–103.CrossRefGoogle Scholar
  4. Brennan B, Lyons R and Phillips S, 1991. Attenuation of alpha particle track dose for spherical grains. Nuclear Tracks Radiational Measurements 18(1–2): 249–253, DOI 10.1016/1359-0189(91)90119-3.CrossRefGoogle Scholar
  5. Brennan BJ, 2003. Beta doses to spherical grains. Radiation Measurements 37(4–5): 299–303, DOI 10.1016/S1350-4487(03)00011-8.CrossRefGoogle Scholar
  6. Cordier S, Harmand D, Lauer T, Voinchet P, Bahain JJ and Frechen M, 2012. Geochronological reconstruction of the Pleistocene evolution of the Sarre valley (France and Germany) using OSL and ESR dating techniques Geomorphology 165–166: 91–106, DOI 10.1016/j.geomorph.2011.12.038.CrossRefGoogle Scholar
  7. Despriée J, Voinchet P, Tissoux H, Bahain J-J, Falguères C, Courcimault G, Dépont J, Moncel M-H, Robin S, Arzarello M, Sala R, Marquer L, Messager E, Puaud S and Abdessadok S, 2011. Lower and Middle Pleistocene human settlements recorded in fluvial deposits of the middle Loire River Basin, Centre Region, France. Quaternary Science Reviews 30(11–12): 1474–1485, DOI 10.1016/j.quascirev.2011.02.011.CrossRefGoogle Scholar
  8. Dolo JM, Lecerf N, Mihajlovic V, Falguères C and Bahain JJ, 1996. Contribution of ESR dosimetry for irradiation of geological and archaeological samples with a 60-Co panoramic source, Applied Radiation and Isotopes 47(11–12): 1419–1421, DOI 10.1016/S0969-8043(96)00205-9.CrossRefGoogle Scholar
  9. Duval M, 2009. Evaluation du potentiel de la méthode de datation par Résonance de Spin Electronique (ESR) appliquée aux gisements du Pléistocène inférieur: étude des gisements d’Orce (bassin de Guadix-Baza, Espagne) et contribution à la connaissance des premiers peuplements de l’Europe. Thèse de doctorat du Muséum National d’Histoire Naturelle, Paris. (Evaluation of the potential and limits of the Electron Spin Resonance (ESR) dating method applied to the Lower Pleistocene sites of Orce (Guadix-Baza basin, Spain) and a contribution to the understanding of the first human settlements of Europe. PhD thesis, Muséum National d’Histoire Naturelle, Paris). 522p.Google Scholar
  10. Duval M, Grün R, Falguères C, Bahain JJ, Dolo JM, 2009. ESR dating of Lower Pleistocene fossil teeth: Limits of the single saturating exponential (SSE) function for the equivalent dose determination. Radiation Measurements 44(5–6): 477–482, DOI 10.1016/j.radmeas.2009.03.017.CrossRefGoogle Scholar
  11. Duval M, Moreno D, Shao Q, Voinchet P and Falguères C, 2011. Datación por ESR del yacimiento arqueológico del Pleistoceno inferior de Vallparadís (Terrassa, Cataluña, España). (ESR dating of the Early Pleistocene archaeological site at Vallparadís (Terrassa, Cataluña, Spain). Trabajos de Prehistoria 68(1) 7–24 (in Spanish).CrossRefGoogle Scholar
  12. Duval M, 2012. Dose response curve of the ESR signal of the Aluminum center in quartz grains extracted from sediment. Ancient TL 30(2): 41–49.Google Scholar
  13. Grün R, 1994. A cautionary note: use of the “water content” and “depth for cosmic ray dose rate” in AGE and DATA. Ancient TL 12: 50–51.Google Scholar
  14. Ikeya M, 1981. Dating methods and limitation by electron spin resonance (ESR). Absolute dating and isotope analysis in prehistory methods and limits proceeding, Lumley H (de) et Labeyrie J eds, p 437–455Google Scholar
  15. Laurent M, Falguères C, Bahain JJ, Rousseau L and Van Vliet-Lanoë B, 1998. ESR dating of quartz extracted from Quaternary and Neogene sediments: method, potential and actual limits. Quaternary Science Reviews 17(11): 1057–1062, DOI 10.1016/S0277-3791(97)00101-7.CrossRefGoogle Scholar
  16. Mercier N and Falguères C, 2007. Field gamma doserate measurement with a NaI(Tl) detector: reevaluation of the “threshold” technique. Ancient TL 25(1): 1–4.Google Scholar
  17. Moreno D, 2011. Datation par ESR de quartz optiquement blanchis (ESR-OB) de la région de Atapuerca (Burgos, Espagne). Application au site préhistorique de Gran Dolina (contexte karstique) et aux systèmes fluviatiles quaternaires de l’Arlanzón et l’Arlanza. Thèse de doctorat du Muséum National d’Histoire Naturelle, Paris. et Universitat Rovira i Virgili, Tarragone. (ESR dating (ESR-OB) of the Atapuerca area (Burgos, Spain). Application to the dating of Gran Dolina prehistorical site (karstic context) and quaternary fluvial systems of Arlanzon and Arlanza Rivers.PhD thesis, Muséum National d’Histoire Naturelle, Paris), 268 p.Google Scholar
  18. Murray AS and Roberts RG, 1997. Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth and Planetary Science Letters 152(1–4): 163–180, DOI 10.1016/S0012-821X(97)00150-7.CrossRefGoogle Scholar
  19. Porter S, An Z and Zheng H, 1992. Cyclic Quaternary Alluviation and Terracing in a Nonglaciated Drainage Basin on the North Flank of the Qinling Shan, Central China. Quaternary Research 38(2): 157–169, DOI 10.1016/0033-5894(92)90053-L.CrossRefGoogle Scholar
  20. Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for Luminescence and ESR Dating: Large depths and long-term time. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8.CrossRefGoogle Scholar
  21. Tissoux H, Despriée J, Voinchet P, Bahain JJ, Falguères C and Duvialard J, 2011. Intérêt de la datation par ESE d’un transect complet pour la compréhension d’un système fluviatile: Exemple de la vallée du Loir. (ESR dating of a complete cross-section interest for the understanding of a fluvial system: the Loir Valley example). Quaternaire 22(4): 345–356.CrossRefGoogle Scholar
  22. Tissoux H, Voinchet P, Lacquement F, Prognon F, Moreno D, Falguères C, Bahain JJ and Toyoda S, 2012. Investigation on non-optically bleachable components of ESR aluminium signal in quartz. Radiation Measurements 47(9): 894–899, DOI 10.1016/j.radmeas.2012.03.012.CrossRefGoogle Scholar
  23. Toyoda S and Ikeya M, 1994. ESR dating of quartz with stable components of impurity centers. Quaternary Science Reviews 13(5–7): 625–628, DOI 10.1016/0277-3791(94)90089-2.CrossRefGoogle Scholar
  24. Toyoda S and Falguères C, 2003. The method to represent the ESR intensity of the aluminium hole center in quartz for the purpose ofdating. Advances in ESR applications 20: 7–10.Google Scholar
  25. Vandenberghe D, De Corte F, Buylaert J-P, Kučera J and Van Den Haute P, 2008. On the internal radioactivity in quartz. Radiation Measurements 43(2–6): 771–775, DOI 10.1016/j.radmeas.2008.01.016.CrossRefGoogle Scholar
  26. Voinchet P, 2002. Datation par résonance paramagnétique électronique (RPE) de quartz blanchis extraits de sédiments fluviatiles pléistocènes: contribution méthodologique et application aux systèmes de la Creuse, du Loir et de l’Yonne. Thèse de doctorat du Muséum National d’Histoire Naturelle. (Electronic Spin Resonance (ESR) dating of optically bleached quartz extracted from Pleistocene fluvial sediments: methodological contribution and dating application to the systems of the Creuse, Loir and Yonne Rivers. PhD thesis, Muséum National d’Histoire Naturelle, Paris). Paris. 268 p.Google Scholar
  27. Voinchet P, Falguères C, Laurent M, Toyoda S, Bahain JJ and Dolo JM, 2003. Artificial optical bleaching of the Aluminium center in quartz implications to ESR dating of sediments. Quaternary Science Reviews, 22(10–13): 1335–1338, DOI 10.1016/S0277-3791(03)00062-3.CrossRefGoogle Scholar
  28. Voinchet P, Bahain JJ, Falguères C, Laurent M, Dolo JM, Despriée J and Gageonnet R, 2004. ESR dating of quartz extracted from Quaternary sediments: Application to fluvial terraces system of Northern France. Quaternaire 15(1–2): 135–141.CrossRefGoogle Scholar
  29. Voinchet P, Despriée J, Tissoux H, Falguères C, Bahain J.-J, Gageonnet R, Dépont J and Dolo J-M, 2010. ESR chronology of alluvial deposits and first human settlements of the Middle Loire Basin (Region Centre, France). Quaternary Geochronology 5(2–3): 381–384, DOI 10.1016/j.quageo.2009.03.005.CrossRefGoogle Scholar
  30. Voinchet P, Falguères C, Tissoux H, Bahain JJ, Despriée J and Pirouelle F, 2007. ESR dating of fluvial quartz: estimate of the minimal distance transport required for getting a maximum optical bleaching. Quaternary Geochronology 2(1–4): 363–366, DOI 10.1016/j.quageo.2006.04.010.CrossRefGoogle Scholar
  31. Xing C, Yin G, Ding G, Lu Y, Shen X, Tina Q, Chai Z and Wei K, 2002. Thickness of calcium carbonates coats on stones of the Heishanxia terraces of the Yellow river and dating of coarse clastic sedimentary geomorphic surfaces. Chinese Science Bulletin 47(19): 1594–1600, DOI 10.1007/BF03184104.Google Scholar
  32. Yin G, Wang X and Han F, 2013. The age of the Shapotou desert based on OSL ages of aeolian sediments in the Yellow River terraces, Ningxia Hui autonomous region, northern China. Quaternary Sciences 33(2): 269–275.Google Scholar
  33. Yokoyama Y, Falguères C, Quaegebeur JP, 1985. ESR dating of quartz from Quaternary sediments: first attempt. Nuclear Tracks and Radiation Measurements 10(4–6): 921–928, DOI 10.1016/0735-245X(85)90109-7.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Pierre Voinchet
    • 1
  • Gongming Yin
    • 2
  • Christophe Falguères
    • 1
  • Chunru Liu
    • 2
  • Fei Han
    • 2
  • Xuefeng Sun
    • 3
  • Jean Jacques Bahain
    • 1
  1. 1.Département de Préhistoire du Muséum National d’Histoire NaturelleUMR 7194 CNRSParisFrance
  2. 2.State Key Laboratory of Earthquake Dynamics, Institute of GeologyChina Earthquake AdministrationBeijingChina
  3. 3.School of Geographical and Oceanographical SciencesNanjing UniversityNanjingChina

Personalised recommendations