Advertisement

Geochronometria

, Volume 40, Issue 4, pp 250–257 | Cite as

Anomalous fading and crystalline structure: Studies on individual chondrules from the same parent body

  • Rabiul Haque BiswasEmail author
  • Ashok Kumar Singhvi
Research Article

Abstract

Plagioclase feldspar is the major luminescent mineral in meteorites. Thermoluminescence (TL) characteristics, peak temperature (Tm), full width at half maximum (FWHM), ratio of high (HT) to low temperature (LT) peak, and TL sensitivity (TL/dose/mass) to an extent reflect degree of crystallinity of the mineral. The present study explores and establishes a correlation between quantum mechanical anomalous (athermal) fading and structural state by examining TL of individual chondrules. Chondrules were separated using freeze-thaw technique from a single fragment of Dhajala meteorite. The results show large variation in Tm (155−230°C), FWHM (80−210°C) and HT/LT (0.07–0.47) and seem to be positively correlated. TL sensitivity (ranging from 14 to 554 counts/s/Gy/mg) decreases with increasing Tm and FWHM. Large variations in TL parameters (Tm, FWHM, HT/LT, and Sensitivty) suggest that individual chondrules had different degree of crystallization. Thermal annealing experiments suggest that comparatively ordered form of feldspar can be converted to a disordered form by annealing the sample at high temperatures (1000°C) for long time (10 hr) in vacuum (1 mbar pressure) condition and rapidly cooling it. Measured anomalous fading suggest that fading rate increases as the crystal form changes from an ordered state to a disordered state. However, the fading rate becomes nearly negligible for the most disordered feldspars.

Keywords

TL of chondrules anomalous fading degree of crystallinity thermal metamorphism thermal annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afouxenidis D, Polymeris GS, Tsirliganis NC and Kitis G, 2012. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program. Radiation Protection Dosimetry 149(4): 363–370, DOI 10.1093/rpd/ncr315.CrossRefGoogle Scholar
  2. Berger GW, 1985. Thermoluminescence dating of volcanic ash. Journal of Volcanology and Geothermal Research 25(3–4): 333–347, DOI 10.1016/0377-0273 (85)90020-4.CrossRefGoogle Scholar
  3. Biswas RH, Morthekai P, Gartia RK, Chawla S and Singhvi AK, 2011. Thermoluminescence of the meteorite interior: A possible tool for the estimation of cosmic ray exposure ages. Earth and Planetary Science Letters 304(1–2): 36–44, DOI 10.1016/j.epsl.2011.01.012.CrossRefGoogle Scholar
  4. Bøtter-Jensen L, Thomsen KJ and Jain M, 2010. Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry. Radiation Measurements 45(3–6): 253–257, DOI 10.1016/j.radmeas.2009.11.030.CrossRefGoogle Scholar
  5. Dodd RT, 1981. Meteorites — A Petrologic-Chemical Synthesis, Cambridge, New York.Google Scholar
  6. Garlick GFJ and Robinson JE, 1972. The thermoluminescence of lunar sample. In the Moon (Edited by Runcorn SK and Urrey H). International astronomical unit: 324–329.Google Scholar
  7. Hasan FA, Keck BD, Hartmetz C and Sears DWG, 1986. Anomalous fading of thermoluminescence in meteorites. Journal of Luminescence 34(6): 327–335, DOI 10.1016/0022-2313(86)90076-1.CrossRefGoogle Scholar
  8. Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38(7): 1093–1106, DOI 10.1139/e01-013.CrossRefGoogle Scholar
  9. Huntley DJ and Lian OB, 2006. Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating. Quaternary Science Reviews 25(19–20): 2503–2512, DOI 10.1016/j.quascirev.2005.05.011.CrossRefGoogle Scholar
  10. Huss GR, Rubin AE and Grossman JN, 2006. Thermal Metamorphism in Chondrites. Meteorites and the Early Solar System II (Edited by Lauretta DS and McSween H Y Jr.). University of Arizona Press, Tucson: 567–586.Google Scholar
  11. Jaek I, Molodkov A and Vasilchenko V, 2007. Possible reasons for anomalous fading in alkali feldspars used for luminescence dating of quaternary deposits. Estonian Journal of Earth Sciences 56(3): 167–178.Google Scholar
  12. Keck BD, Kyle Guimon R and Sears DWG, 1986. Chemical and physical studies of type 3 chondrites, VII. Annealing studies of the Dhajala H3.8 chondrite and the thermal history of chondrules and chondrites. Earth and Planetary Science Letters 77(3–4): 419–427, DOI 10.1016/0012-821x (86)90151-2.CrossRefGoogle Scholar
  13. Melcher CL, 1981. Thermoluminescence of meteorites and their orbits. Earth and Planetary Science Letters 52(1): 39–54, DOI 10.1016/0012-821X(81)90206-5.CrossRefGoogle Scholar
  14. Poolton NRJ, Ozanyan KB, Wallinga J, Murray AS and Bøtter-Jensen L, 2002a. Electrons in feldspar II: A consideration of the influence of conduction band-tail states on luminescence processes. Physics and Chemistry of Minerals 29(3): 217–225, DOI 10.1007/s00269-001-0218-2.CrossRefGoogle Scholar
  15. Poolton NRJ, Wallinga J, Murray AS, Bulur E and Bøtter-Jensen L, 2002b. Electrons in feldspar I: On the wavefunction of electrons trapped at simple lattice defects. Physics and Chemistry of Minerals 29(3): 210–216, DOI 10.1007/s00269-001-0217-3.CrossRefGoogle Scholar
  16. Randall JT and Wilkinson MHF, 1945. Phosphorescence and electron traps. Proceedingsof the Royal Society A 184(999): 365–389, DOI 10.1098/rspa.1945.0024.CrossRefGoogle Scholar
  17. Sears DW and Durrani SA, 1980. Thermoluminescence and the terrestrial age of meteorites: Some recent results. Earth and Planetary Science Letters 46(2): 159–166, DOI 10.1016/0012-821X(80)90002-3.CrossRefGoogle Scholar
  18. Sears DW, Grossman JN, Melcher CL, Ross LM and Mills AA, 1980. Measuring metamorphic history of unequilibrated ordinary chondrites. Nature 287(5785): 791–795, DOI 10.1038/287791a0.CrossRefGoogle Scholar
  19. Sears DWG, 1988. Thermoluminescence of meteorites: Shedding light on the cosmos. International Journal of Radiation Applications and Instrumentation. Part D 14(1–2): 5–17, DOI 10.1016/1359-0189(88)90036-2.Google Scholar
  20. Sears DWG, Sparks MH and Rubin AE, 1984. Chemical and physical studies of type 3 chondrites-III. Chondrules from the Dhajala H3.8 chondrite. Geochimica et Cosmochimica Acta 48(6): 1189–1200, DOI 10.1016/0016-7037(84)90055-3.CrossRefGoogle Scholar
  21. Sears DWG and Weeks KS, 1983. Chemical and physical studies of type 3 chondrites — II: Thermoluminescence of sixteen type 3 ordinary chondrites and relationships with oxygen isotopes. Journal of Geophysical Research 88: 301–311, DOI 10.1029/JB088iS01p0B301.CrossRefGoogle Scholar
  22. Tyler S and McKeever SWS, 1988. Anomalous fading of thermoluminescence in oligoclase. International Journal of Radiation Applications and Instrumentation. Part D 14(1–2): 149–154, DOI 10.1016/1359-0189(88)90056-8.Google Scholar
  23. Visocekas R, 1985. Tunnelling radiative recombination in labradorite: Its association with anomalous fading of thermoluminescence. Nuclear Tracks and Radiation Measurements (1982) 10(4–6): 521–529, DOI 10.1016/0735-245X(85)90053-5.CrossRefGoogle Scholar
  24. Visocekas R, 2002. Tunnelling in afterglow, its coexistence and interweaving with thermally stimulated luminescence. Radiation Protection Dosimetry 100(1–4): 45–54.CrossRefGoogle Scholar
  25. Wintle AG, 1973. Anomalous fading of thermo-luminescence in mineral samples. Nature 245(5421): 143–144, DOI 10.1038/245143a0.CrossRefGoogle Scholar
  26. Yu Y and Hewins RH, 1998. Transient heating and chondrule formation: Evidence from sodium loss in flash heating simulation experiments. Geochimica et Cosmochimica Acta 62(1): 159–172, DOI 10.1016/s0016-7037 (97)00321-9.CrossRefGoogle Scholar
  27. Zanda B, 2004. Chondrules. Earth and Planetary Science Letters 224(1–2): 1–17, DOI 10.1016/j.epsl.2004.05.005.CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Geosciences DivisionPhysical Research LaboratoryAhmedabadIndia

Personalised recommendations