Skip to main content
Log in

Thermoluminescence as a technique for determining the nature and history of small solar system particles

  • Published:
Geochronometria

Abstract

The thermoluminescence phenomenon has been used for pottery dating and radiation dosimetry for sixty years and for forty years has been applied to the study of meteorites, being successful in quantifying metamorphic histories and providing new insights into terrestrial age and orbits. Here we review some of the fundamental properties of thermoluminescence with particular focus on the study of small extraterrestrial particles. We suggest that natural TL data can be used to identify the burial and release history of cometary particles and that induced TL measurements can provide in-sights into the mineralogy of particles (even when largely amorphous) and the metamorphic history of those particles. We illustrate the use of TL to study small particles by describing recent studies on micrometeorites and 10–100 μm fragments taken from the matrix of a meteorite Semarkona which is type 3.0 ordinary chondrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitken MJ, 1974. Physics and archaeology. Interscience Publishers: 181pp.

  • Armstrong JT and Wasserburg GJ, 1981. The Allende Pink Angel: its Mineralogy, Petrology and the Constraints of its Genesis. Lunar and Planetary Science XII, 25–27.

    Google Scholar 

  • Benoit PH and Sears DWG, 1994. A recent meteorite fall in Antarctic with an unusual orbital history. Earth and Planetary Science Letters 120(3–4): 463–471, DOI 10.1016/0012-821X(93)90257-A.

    Google Scholar 

  • Benoit PH, Roth J, Sears H and Sears DWG, 1994. The natural thermoluminescence of meteorites 7: Ordinary chondrites from the Elephant Moraine region, Antarctica. Journal of Geophysical Research — Planets 99(E1): 2073–2085, DOI 10.1029/93JE02474.

    Article  Google Scholar 

  • Bradley JP, Brownlee DE and Keller LP, 1994. Reflectance Spectroscopy of Individual Interplanetary Dust Particles, Lunar and Planetary Science Conference XXV, Abstract # 159.

  • Bradley JP, Keller LP, Brownlee DE and Thomas KL, 1996. Reflectance spectroscopy of interplanetary dust particles. Meteoritics & Planetary Science 31: 394–402.

    Google Scholar 

  • Bradley JP, Snow T, Brownlee DE, Keller LP, Flynn GJ and Miller M, 1998. Optical, Mineralogical, and Trace Element Properties of GEMS: Evaluating the Interstellar Connection, Lunar and Planetary Science XXIX, Abstract # 1737.

  • Bradley JP, Keller LP, Gezo J, Snow T, Flynn GJ, Brownlee DE and Bowey J, 1999. The 10 and 18 Micrometer Silicate Features of GEMS: Comparison with Astronomical Silicates, Lunar and Planetary Science XXX, Abstract # 1835.

  • Brownlee DE, Joswiak DJ and Bradley JP, 1999. High Spatial Resolution Analyses of GEMS and Other Ultrafine Grained IDP Components. Lunar and Planetary Science XXX, Abstract # 2031.

  • Brownlee D and 182 others, 2006. Comet 81P/Wild 2 Under a Microscope. Science 314(5806): 1711–1716, DOI 10.1126/science.1135840.

    Article  Google Scholar 

  • Brownlee DE, Joswiak D, Bradley J and Matrajt G, 2007. The Origin of Crystalline Silicates in Comets and Large Scale Mixing in the Solar Nebula. Lunar and Planetary Science XXXVIII, Abstract # 2189.

  • Campins H, 1999. Interstellar Signatures in Cometary Solids. Lunar and Planetary Science XXX, Abstract # 1542.

  • Chi M, Ishii H, Toppani A, Browning ND and Bradley JP, 2007. Does Comet Wild-2 Contain GEMS? Lunar and Planetary Science XXXVIII, Abstract # 2010.

  • Christoffersen R and Keller L, 2006. Space Plasma Ion Processing of IDP Sulfides: A Comparison to Silicates Based on In-Situ TEM Ion Irradiation Experiments. Lunar and Planetary Science XXXVII, Abstract #1738.

  • Cody GD, Yabuta H, Alexander CMO’D, Araki T and Kilcoyne ALD, 2007. Placing Comet 81P/Wild 2 Organic Particles into Context with Chondritic Organic Solids. Lunar and Planetary Science XXXVIII, Abstract # 2286.

  • Colangeli L, Bossoletti E and Schwehm G, 1992. Physical models of comet nuclei, A review. In: Hunt J and Guyenne TD, eds., Physical Mechanics of Comet Materials. European Space Agency, special publication 302: 17–22.

  • Craig JP and Sears DWG, 2009. The fine-grained matrix of the Semarkona LL3.0 ordinary chondrite: An induced thermoluminescence study. Meteoritics & Planetary Science 44(5), 643–652, DOI 10.1111/j.1945-5100.2009.tb00760.x.

    Article  Google Scholar 

  • Brownlee DE, 1987. Morphological, Chemical and Mineralogical Studies of Cosmic Dust [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 323(1572): 305–311, DOI 10.1098/rsta.1987.0087.

    Google Scholar 

  • Flynn GJ and 79 others, 2006. Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust. Science 314(5806): 1731–1735, DOI 10.1126/science.1136141.

    Article  Google Scholar 

  • Garlick GFJ, 1949. Luminescent Materials. Clarendon Press: 271pp.

  • Geake JE, Walker G, Telfer DJ, Mills AA and Garlick GFJ, 1973. Luminescence of lunar, terrestrial, and synthesized plagioclase caused by Mn2+ and Fe3+. Proceedings of the Lunar Science Conference 4, 3181.

    Google Scholar 

  • Guimon RK, Keck BD and Sears DWG, 1985. Chemical and physical studies of type 3 chondrites — IV: Annealing studies of a type 3.4 ordinary chondrite and the metamorphic history of meteorites. Geochimica et Cosmochimica Acta 19: 1515–1524.

    Article  Google Scholar 

  • Haq M, Hasan FA and Sears DWG, 1988. Thermoluminescence and the shock and reheating history of meteorites — IV: The induced TL properties of type 4–6 ordinary chondrites. Geochimica et Cosmochimica Acta 52: 1679–1689.

    Article  Google Scholar 

  • Hartmetz CP, Ostertag R and Sears DWG, 1986. A thermoluminescence study of experimentally shock-loaded oligoclase and bytownite. Journal of Geophysical Research 91: E263–E274, DOI 10.1029/JB091iB13p0E263.

    Article  Google Scholar 

  • Hasan FA, Haq M and Sears DWG, 1987. The natural thermoluminescence levels in meteorites I. 23 meteorites of known Al-26 content. Journal of Geophysical Research 92: E703–E709, DOI 10.1029/JB092iB04p0E703.

    Article  Google Scholar 

  • Hörz F and 43 others, 2006. Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust. Science 314(5806): 1716–1719, DOI 10.1126/science.1135705.

    Article  Google Scholar 

  • Hoyt HP Jr., Walker RM, Zimmerman DW, Zimmerman J, 1972. Thermoluminescence of individual grains and bulk samples of lunar fines. Proceedings of the Lunar Science Conference 2: 2997.

    Google Scholar 

  • Jessberger EK, Christoforidis A and Kissel J, 1988. Aspects of the Major Element Composition of Halley’s Dust. Nature 332: 691–695, DOI 10.1038/332691a0.

    Article  Google Scholar 

  • Joswiak DJ and Brownlee DE, 1998. Atmospheric Entry Melting in 5–15 Micrometer Hydrous IDPs: Evidence from Analytical TEM Studies and Pulse-Heating Experiments. Lunar and Planetary Science XXIX, Abstract # 1929.

  • Joswiak DJ and Brownlee DE, 2006. Non-GEMS Silicate Glasses in Chondritic Porous Interplanetary Dust Particles, Lunar and Planetary Science Conference XXXVII, Abstract # 2190.

  • Joswiak DJ, Matrajt G. Brownlee DE, Westphal AJ and Snead CJ, 2007. A Roedderite-bearing Terminal Particle from Stardust Track 56: Comparison with Rare Peralkaline Chondrules in Ordinary Chondrites. Lunar and Planetary Science XXXVIII, Abstract # 2142.

  • Keller HU, Kramm R and Thomas N, 1988. Surface features on the nucleus of Comet Halley. Nature 331, 227–231, DOI 10.1038/331227a0.

    Article  Google Scholar 

  • Keller LP and 32 others, 2006. Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust. Science 314(5806): 1728–1731, DOI 10.1126/science.1135796.

    Article  Google Scholar 

  • Lisse CM, VanCleve J, Adams AC, A’Hearn MF, Fernández YR, Farn-ham TL, Armus L, Grillmair CJ, Ingalls J, Belton MJS, Groussin O, McFadden, LA, Meech KJ, Schultz PH, Clark BC, Feaga LM, Sunshine JM, 2006. Spitzer Spectral Observations of the Deep Impact Ejecta. Science 313(5787): 635–640, DOI 10.1126/science.1124694.

    Article  Google Scholar 

  • McKeegan KD and 46 others, 2006. Isotopic Compositions of Cometary Matter Returned by Stardust. Science 314(5806): 1724–1728, DOI 10.1126/science.1135992.

    Article  Google Scholar 

  • McKeever SWS, 1988. Thermoluminescence of Solids. Cambridge University Press: 390 pp.

  • Meech KJ, Ageorges N, A’Hearn MF, Arpigny C, Ates A, Aycock J, Bagnulo S, Bailey J, Barber R, Barrera L and 199 coauthors, 2005. Deep Impact: Observations from a Worldwide Earth-Based Campaign. Science 310: 265–269, DOI 10.1126/science.1118978.

    Article  Google Scholar 

  • Meeker GP, 1995. Formation of CAIs by Partial Melting and Accretion During Heating in a Gas of Solar Composition. Lunar and Planetary Science XXIV: 947–948.

    Google Scholar 

  • Meeker GP, Wasserburg GJ and Armstrong JT, 1983. Replacement textures in CAI and implications regarding planetary metamorphism. Geochimica et Cosmochimica Acta 47: 707–721.

    Article  Google Scholar 

  • Ninagawa K, Soyama K, Ota M, Toyoda S, Imae N, Kojima H, Benoit PH and Sears DWG, 2000. Thermoluminescence studies of ordinary chondrites in the Japanese Antarctic meteorite collection, II: New measurements for thirty type 3 ordinary chondrites. Antarctic Meteorite Research 13: 112–120.

    Google Scholar 

  • Palma RL, Pepin RO, Schlutter D and Simones J, 2007. Helium and Neon Isotopic Compositions from Stardust Aerogel Particle Tracks Lunar and Planetary Science XXXVIII, Abstract # 2032.

  • Papanastassiou DA, Brigham CA and Wasserburg GJ, 1984. Search for MG Isotopic Signatures in Allende. Lunar and Planetary Science XV, 629–630.

    Google Scholar 

  • Rickman H, 1991. The thermal history and structure of cometary nuclei. In: Comets in the post-Halley era. 2, 733–760.

    Google Scholar 

  • Rietmeijer FJM, 2007. Challenges to Understand Aerogel Contaminated by Hypervelocity-impacted. Lunar and Planetary Science XXXVIII, Abstract # 1082.

  • Sandford SA and 54 others, 2006. Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft. Science 314(5806): 1720–1724, DOI 10.1126/science.1135841.

    Article  Google Scholar 

  • Schramm LS, Brownlee DE and Wheelock MM, 1989. Major element composition of stratospheric micrometeorites. Meteoritics 24: 99–112.

    Google Scholar 

  • Schultz PH, Eberhardy CA, Ernst CM, A’Hearn MF, Sunshine JM and Lisse CM, 2007. The Deep Impact oblique impact cratering experiment. Icarus 190(2), 295–333, DOI 10.1016/j.icarus.2007.06.006.

    Article  Google Scholar 

  • Sears DW, 1975. Temperature gradients in meteorites produced by heating during atmospheric passage. Modern Geology 5: 155–164.

    Google Scholar 

  • Sears DWG and Hasan FA, 1986. Thermoluminescence and Antarctic meteorites. In: Annexstad JO, Schultz L, and Wanke H, eds., Proc. 2nd Workshop on Antarctic Meteorites LPI Technical Rept. 86-01. Lunar and Planetary Institute, Houston: 83–100.

  • Sears DWG and Hasan FA, 1987. Type 3 ordinary chondrites: A review. Surveys in Geophysics 9(1): 43–97, DOI 10.1007/BF01903400.

    Article  Google Scholar 

  • Sears DW, Grossman JN, Melcher CL, Ross LM and Mills AA, 1980. Measuring the metamorphic history of unequilibrated ordinary chondrites. Nature 287: 791–795, DOI 10.1038/287791a0.

    Article  Google Scholar 

  • Sears DWG, Symes SP, Guimon RK and Benoit PH, 1995. Chemical and physical studies of type 3 chondrites XII: The metamorphic history of CV chondrites and their components. Meteoritics 30: 707–714.

    Google Scholar 

  • Sears DWG, Kochan H and Huebner WF, 1999. Simulation experiments and surface processes on comets. Meteoritics and Planetary Science 34(4): 497–525, DOI 10.1111/j.1945-5100.1999.tb01360.x.

    Article  Google Scholar 

  • Sedaghatpour F and Sears DWG, 2009. Characterization of Antarctic micrometeorites by thermoluminescence. Meteoritics & Planetary Science 44(5), 653–664, DOI 10.1111/j.1945-5100.2009.tb00761.x.

    Article  Google Scholar 

  • Singhvi AK, Pal S and Bhandari N, 1982. Ablation Characteristics of Meteorites Based on Thermoluminescence and Track Studies. PACT 6: 404–410.

    Google Scholar 

  • Space Studies Board, 2000. Preventing the Forward Contamination of Europa, 2 Europa. In National Research Council. A Science Strategy for the Exploration of Europa, National Academy Press, Washington, D.C., 1999. Updated 6/29/00.

    Google Scholar 

  • Stephan T, Flynn GJ, Sandford SA, Zolensky ME, 2007. TOF-SIMS Analysis of Comet Wild 2 Particles Extracted from Stardust Aerogel. 38th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXVIII), held March 12–16, in League City, Texas. LPI Contribution No. 1338, p.1126

  • Stoeffler D and Düeren H, 1992. Cometary analogue material — Types, tests, and results. Annales Geophysicae 10, 206–216.

    Google Scholar 

  • Thomas KL, Blanford GE, Keller LP, Klock W and McKay DS, 1993. Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta 53: 1551–1556.

    Article  Google Scholar 

  • Whipple FL, 1951. A Comet Model. II. Physical Relations for Comets and Meteors. Astrophysical Journal 113, 464–474.

    Article  Google Scholar 

  • Zolensky ME, Pieters C, Clark B and Papike JJ, 2000. Invited Review Small is beautiful: The analysis of nanogramsized astromaterials. Meteoritics and Planetary Science 35(1): 9–29, DOI 10.1111/j.1945-5100.2000.tb01970.x.

    Article  Google Scholar 

  • Zolensky ME and 74 others, 2006. Mineralogy and petrology of Comet 81P/Wild 2 nucleus samples. Science 314(5806): 1735–1739, DOI 10.1126/science.1135842.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek W. G. Sears.

About this article

Cite this article

Craig, J.P., Sears, D.W.G. Thermoluminescence as a technique for determining the nature and history of small solar system particles. Geochron 38, 272–281 (2011). https://doi.org/10.2478/s13386-011-0040-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13386-011-0040-7

Keywords

Navigation