Skip to main content
Log in

Beta oscillations and their functional role in movement perception

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Neuronal oscillations refer to periodic changes of neuronal activity. A prominent neuronal oscillation, especially in sensorimotor areas, is the beta-frequency-band (∼ 13–29 Hz). Sensorimotor beta oscillations are predominantly linked to motor-related functions such as preparation and/or execution of movements. In addition, beta oscillations have been suggested to play a role in long-range communication between multiple brain areas. In this review, we assess different studies that show that sensorimotor beta oscillations are additionally involved in the visual perception and imagery of biological movements. We propose that sensorimotor beta oscillations reflect a mechanism of attempted matching to internally stored representations of movements. We additionally, provide evidence that beta oscillations play a role for the integration of visual and sensorimotor areas to a functional network that incorporates perceptual components at specific spatial-temporal profiles and transmits information across different areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buzsaki G., Logothetis N., Singer W., Scaling brain size, keeping timing: evolutionary preservation of brain rhythms, Neuron, 2013, 80, 751–764

    Article  PubMed  CAS  Google Scholar 

  2. Fell J., Axmacher N., The role of phase synchronization in memory processes, Nat. Rev. Neurosci., 2011, 12, 105–118

    Article  PubMed  CAS  Google Scholar 

  3. Buzsaki G., Large-scale recording of neuronal ensembles, Nat. Neurosci., 2004, 7, 446–451

    Article  PubMed  CAS  Google Scholar 

  4. Buzsaki G., Draguhn A., Neuronal oscillations in cortical networks, Science, 2004, 304, 1926–1929

    Article  PubMed  CAS  Google Scholar 

  5. Berger H., Hans Berger on the electroencephalogram of man. The fourteen original reports on the human electroencephalogram, Elsevier Pub. Co., Amsterdam, New York, 1969

    Google Scholar 

  6. Laughlin S.B., Sejnowski T.J., Communication in neuronal networks, Science, 2003, 301, 1870–1874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Bressler S.L., Large-scale cortical networks and cognition, Brain Res. Rev., 1995, 20, 288–304

    Article  PubMed  CAS  Google Scholar 

  8. Canolty R.T., Knight R.T., The functional role of cross-frequency coupling, Trends Cogn. Sci., 2010, 14, 506–515

    Article  PubMed  PubMed Central  Google Scholar 

  9. von Stein A., Sarnthein J., Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization, Int. J. Psychophysiol., 2000, 38, 301–313

    Article  Google Scholar 

  10. VanRullen R., Koch C., Is perception discrete or continuous?, Trends Cogn. Sci., 2003, 7, 207–213

    Article  PubMed  Google Scholar 

  11. Buzsaki G., Geisler C., Henze D.A., Wang X.J., Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons, Trends Neurosci., 2004, 27, 186–193

    Article  PubMed  CAS  Google Scholar 

  12. Jensen O., Colgin L.L., Cross-frequency coupling between neuronal oscillations, Trends Cogn. Sci., 2007, 11, 267–269

    Article  PubMed  Google Scholar 

  13. Kopell N., Ermentrout G.B., Whittington M.A., Traub R.D., Gamma rhythms and beta rhythms have different synchronization properties, Proc. Natl. Acad. Sci. USA, 2000, 97, 1867–1872

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Engel A.K., Fries P., Beta-band oscillations — signalling the status quo?, Curr. Opin. Neurobiol., 2010, 20, 156–165

    Article  PubMed  CAS  Google Scholar 

  15. Klimesch W., Memory processes, brain oscillations and EEG synchronization, Int. J. Psychophysiol., 1996, 24, 61–100

    Article  PubMed  CAS  Google Scholar 

  16. Klimesch W., EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis, Brain Res. Rev., 1999, 29, 169–195

    Article  PubMed  CAS  Google Scholar 

  17. Palva S., Palva J.M., New vistas for alpha-frequency band oscillations, Trends. Neurosci., 2007, 30, 150–158

    Article  PubMed  CAS  Google Scholar 

  18. Singer W., Neuronal synchrony: a versatile code for the definition of relations?, Neuron, 1999, 24, 49–65, 111–125

    Article  PubMed  CAS  Google Scholar 

  19. Varela F., Lachaux J.P., Rodriguez E., Martinerie J., The brainweb: phase synchronization and large-scale integration, Nat. Rev. Neurosci., 2001, 2, 229–239

    Article  PubMed  CAS  Google Scholar 

  20. Jacobs J., Kahana M.J., Direct brain recordings fuel advances in cognitive electrophysiology, Trends Cogn. Sci., 2010, 14, 162–171

    Article  PubMed  PubMed Central  Google Scholar 

  21. Knyazev G.G., EEG delta oscillations as a correlate of basic homeostatic and motivational processes, Neurosci. Biobehav. Rev., 2012, 36, 677–695

    Article  PubMed  Google Scholar 

  22. Knyazev G.G., Slobodskoj-Plusnin J.Y., Bocharov A.V., Event-related delta and theta synchronization during explicit and implicit emotion processing, Neuroscience, 2009, 164, 1588–1600

    Article  PubMed  CAS  Google Scholar 

  23. Steriade M., Amzica F., Slow sleep oscillation, rhythmic K-complexes, and their paroxysmal developments, J. Sleep Res., 1998, 7(Suppl. 1), 30–35

    Article  PubMed  Google Scholar 

  24. Jensen O., Tesche C.D., Frontal theta activity in humans increases with memory load in a working memory task, Eur. J. Neurosci., 2002, 15, 1395–1399

    Article  PubMed  Google Scholar 

  25. Colgin L.L., Mechanisms and functions of theta rhythms, Annu. Rev. Neurosci., 2013, 36, 295–312

    Article  PubMed  CAS  Google Scholar 

  26. Pfurtscheller G., Stancak A.Jr., Neuper C., Event-related synchronization (ERS) in the alpha band — an electrophysiological correlate of cortical idling: a review, Int. J. Psychophysiol., 1996, 24, 39–46

    Article  PubMed  CAS  Google Scholar 

  27. Jensen O., Mazaheri A., Shaping functional architecture by oscillatory alpha activity: gating by inhibition, Front. Hum. Neurosci., 2010, 4, 186

    Article  PubMed  PubMed Central  Google Scholar 

  28. Romei V., Brodbeck V., Michel C., Amedi A., Pascual-Leone A., Thut G., Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas, Cereb. Cortex, 2008, 18, 2010–2018

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lange J., Oostenveld R., Fries P., Reduced occipital alpha power indexes enhanced excitability rather than improved visual perception, J. Neurosci., 2013, 33, 3212–3220

    Article  PubMed  CAS  Google Scholar 

  30. Lange J., Keil J., Schnitzler A., van Dijk H., Weisz N., The role of alpha oscillations for illusory perception, Behav. Brain Res., 2014, 271C, 294–301

    Article  Google Scholar 

  31. Pfurtscheller G., Klimesch W., Event-related desynchronization during motor behavior and visual information processing, Electroencephalogr. Clin. Neurophysiol. Suppl., 1991, 42, 58–65

    PubMed  CAS  Google Scholar 

  32. Pfurtscheller G., Lindinger G., Klimesch W., [Dynamic EEG mapping—an imaging procedure for studying perceptive, motor and cognitive brain performance], EEG EMG Z. Elektroenzephalogr. Elektromyogr. Verwandte Geb., 1986, 17, 113–116

    PubMed  CAS  Google Scholar 

  33. Jensen O., Lisman J.E., Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer, Trends Neurosci., 2005, 28, 67–72

    Article  PubMed  CAS  Google Scholar 

  34. Jokisch D., Jensen O., Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream, J. Neurosci., 2007, 27, 3244–3251

    Article  PubMed  CAS  Google Scholar 

  35. Bauer M., Oostenveld R., Peeters M., Fries P., Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas, J. Neurosci., 2006, 26, 490–501

    Article  PubMed  CAS  Google Scholar 

  36. Basar E., Basar-Eroglu C., Karakas S., Schurmann M., Brain oscillations in perception and memory, Int. J. Psychophysiol., 2000, 35, 95–124

    Article  PubMed  CAS  Google Scholar 

  37. Gruber T., Muller M.M., Keil A., Modulation of induced gamma band responses in a perceptual learning task in the human EEG, J. Cogn. Neurosci., 2002, 14, 732–744

    Article  PubMed  Google Scholar 

  38. Tallon-Baudry C., Bertrand O., Oscillatory gamma activity in humans and its role in object representation, Trends Cogn. Sci., 1999, 3, 151–162

    Article  PubMed  Google Scholar 

  39. Busch N.A., Herrmann C.S., Muller M.M., Lenz D., Gruber T., A crosslaboratory study of event-related gamma activity in a standard object recognition paradigm, Neuroimage, 2006, 33, 1169–1177

    Article  PubMed  Google Scholar 

  40. Engel A.K., Fries P., Singer W., Dynamic predictions: oscillations and synchrony in top-down processing, Nat. Rev. Neurosci., 2001, 2, 704–716

    Article  PubMed  CAS  Google Scholar 

  41. Salmelin R., Hari R., Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement, Neuroscience, 1994, 60, 537–550

    Article  PubMed  CAS  Google Scholar 

  42. Salmelin R., Hamalainen M., Kajola M., Hari R., Functional segregation of movement-related rhythmic activity in the human brain, Neuroimage, 1995, 2, 237–243

    Article  PubMed  CAS  Google Scholar 

  43. Pfurtscheller G., Neuper C., Strein T., Pichler-Zalaudek K., Rothl W., Radl W., et al., Event-related desynchronization (ERD) during movement and imagination of movement in patients with amputated limbs or spinel cord lesions compared to healthy control subjects. ERD during imagination of movement, Klin. Neurophysiol., 1999, 30, 176–183

    Article  Google Scholar 

  44. Pfurtscheller G., Stancak A.Jr., Neuper C., Post-movement beta synchronization. A correlate of an idling motor area?, Electroencephalogr. Clin. Neurophysiol., 1996, 98, 281–293

    Article  PubMed  CAS  Google Scholar 

  45. Pfurtscheller G., Woertz M., Supp G., Lopes da Silva F.H., Early onset of post-movement beta electroencephalogram synchronization in the supplementary motor area during self-paced finger movement in man, Neurosci. Lett., 2003, 339, 111–114

    Article  PubMed  CAS  Google Scholar 

  46. Pfurtscheller G., Zalaudek K., Neuper C., Event-related beta synchronization after wrist, finger and thumb movement, Electroencephalogr. Clin. Neurophysiol., 1998, 109, 154–160

    Article  PubMed  CAS  Google Scholar 

  47. Salmelin R., Forss N., Knuutila J., Hari R., Bilateral activation of the human somatomotor cortex by distal hand movements, Electroencephalogr. Clin. Neurophysiol., 1995, 95, 444–452

    Article  PubMed  CAS  Google Scholar 

  48. Baker S.N., Oscillatory interactions between sensorimotor cortex and the periphery, Curr. Opin. Neurobiol., 2007, 17, 649–655

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Schnitzler A., Gross J., Normal and pathological oscillatory communication in the brain, Nat. Rev. Neurosci., 2005, 6, 285–296

    Article  PubMed  CAS  Google Scholar 

  50. Brown P., Abnormal oscillatory synchronisation in the motor system leads to impaired movement, Curr. Opin. Neurobiol., 2007, 17, 656–664

    Article  PubMed  CAS  Google Scholar 

  51. Brown P., Mazzone P., Oliviero A., Altibrandi M.G., Pilato F., Tonali P.A., et al., Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease, Exp. Neurol., 2004, 188, 480–490

    Article  PubMed  Google Scholar 

  52. Brown P., Oliviero A., Mazzone P., Insola A., Tonali P., Di Lazzaro V., Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease, J. Neurosci., 2001, 21, 1033–1038

    PubMed  CAS  Google Scholar 

  53. Kuhn A.A., Doyle L., Pogosyan A., Yarrow K., Kupsch A., Schneider G.H., et al., Modulation of beta oscillations in the subthalamic area during motor imagery in Parkinson’s disease, Brain, 2006, 129, 695–706

    Article  PubMed  Google Scholar 

  54. Hirschmann J., Ozkurt T.E., Butz M., Homburger M., Elben S., Hartmann C.J., et al., Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson’s disease, Neuroimage, 2011, 55, 1159–1168

    Article  PubMed  CAS  Google Scholar 

  55. Schnitzler A., Gross J., Timmermann L., Synchronised oscillations of the human sensorimotor cortex, Acta Neurobiol. Exp., 2000, 60, 271–287

    CAS  Google Scholar 

  56. Schoffelen J.M., Oostenveld R., Fries P., Imaging the human motor system’s beta-band synchronization during isometric contraction, Neuroimage, 2008, 41, 437–447

    Article  PubMed  Google Scholar 

  57. van Elswijk G., Maij F., Schoffelen J.M., Overeem S., D.F. S., Fries P., Corticospinal beta-band synchronization entails rhythmic gain modulation, J. Neurosci., 2010, 30, 4481–4488

    Article  PubMed  Google Scholar 

  58. Babiloni C., Babiloni F., Carducci F., Cincotti F., Cocozza G., Del Percio C., et al., Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study, Neuroimage, 2002, 17, 559–572

    Article  PubMed  Google Scholar 

  59. Muthukumaraswamy S.D., Johnson B.W., Changes in rolandic mu rhythm during observation of a precision grip, Psychophysiology, 2004, 41, 152–156

    Article  PubMed  CAS  Google Scholar 

  60. Muthukumaraswamy S.D., Johnson B.W., Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG, Clin. Neurophysiol., 2004, 115, 1760–1766

    Article  PubMed  Google Scholar 

  61. Pfurtscheller G., Neuper C., Brunner C., da Silva F.L., Beta rebound after different types of motor imagery in man, Neurosci. Lett., 2005, 378, 156–159

    Article  PubMed  CAS  Google Scholar 

  62. Schnitzler A., Salenius S., Salmelin R., Jousmaki V., Hari R., Involvement of primary motor cortex in motor imagery: a neuromagnetic study, Neuroimage, 1997, 6, 201–208

    Article  PubMed  CAS  Google Scholar 

  63. Pfurtscheller G., Neuper C., Motor imagery activates primary sensorimotor area in humans, Neurosci. Lett., 1997, 239, 65–68

    Article  PubMed  CAS  Google Scholar 

  64. Koelewijn T., van Schie H.T., Bekkering H., Oostenveld R., Jensen O., Motor-cortical beta oscillations are modulated by correctness of observed action, Neuroimage, 2008, 40, 767–775

    Article  PubMed  Google Scholar 

  65. Orgs G., Dombrowski J.H., Heil M., Jansen-Osmann P., Expertise in dance modulates alpha/beta event-related desynchronization during action observation, Eur. J. Neurosci., 2008, 27, 3380–3384

    Article  PubMed  Google Scholar 

  66. Shiffrar M., People watching: visual, motor, and social processes in the perception of human movement, Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 68–79

    Google Scholar 

  67. Lange J., Georg K., Lappe M., Visual perception of biological motion by form: a template-matching analysis, J. Vis., 2006, 6, 836–849

    Article  PubMed  Google Scholar 

  68. Lange J., Lappe M., A model of biological motion perception from configural form cues, J. Neurosci., 2006, 26, 2894–2906

    Article  PubMed  CAS  Google Scholar 

  69. Shiffrar M., Freyd J.J., Apparent motion of the human body, Psychol. Sci., 1990, 1, 257–264

    Article  Google Scholar 

  70. Shiffrar M., Freyd J.J., Timing and apparent motion path choice with human body photographs, Psychol. Sci., 1993, 4, 379–384

    Article  Google Scholar 

  71. Pavlidou A., Schnitzler A., Lange J., Interactions between visual and motor areas during the recognition of plausible actions as revealed by magnetoencephalography, Hum. Brain Mapp., 2014, 35, 581–592

    Article  PubMed  Google Scholar 

  72. Pavlidou A., Schnitzler A., Lange J., Distinct spatio-temporal profiles of beta-oscillations within visual and sensorimotor areas during action recognition as revealed by MEG, Cortex, 2014, 54, 106–116

    Article  PubMed  Google Scholar 

  73. Johansson G., Visual perception of biological motion and a model for its analysis, Percept. Psychophys., 1973, 14, 201–211

    Article  Google Scholar 

  74. Brovelli A., Ding M., Ledberg A., Chen Y., Nakamura R., Bressler S.L., Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality, Proc. Natl. Acad. Sci. USA, 2004, 101, 9849–9854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Buschman T.J., Miller E.K., Shifting the spotlight of attention: evidence for discrete computations in cognition, Front. Hum. Neurosci., 2010, 4, 194

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gross J., Timmermann L., Kujala J., Dirks M., Schmitz F., Salmelin R., et al., The neural basis of intermittent motor control in humans, Proc. Natl. Acad. Sci. USA, 2002, 99, 2299–2302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Bibbig A., Traub R.D., Whittington M.A., Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model, J. Neurophysiol., 2002, 88, 1634–1654

    PubMed  Google Scholar 

  78. de Lange F.P., Jensen O., Bauer M., Toni I., Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions, Front. Hum. Neurosci., 2008, 2, 7

    PubMed  PubMed Central  Google Scholar 

  79. Grossman E.D., Battelli L., Pascual-Leone A., Repetitive TMS over posterior STS disrupts perception of biological motion, Vision Res., 2005, 45, 2847–2853

    Article  PubMed  Google Scholar 

  80. van Kemenade B.M., Muggleton N., Walsh V., Saygin A.P., Effects of TMS over premotor and superior temporal cortices on biological motion perception, J. Cogn. Neurosci., 2012, 24, 896–904

    Article  PubMed  Google Scholar 

  81. Crowell A.L., Ryapolova-Webb E.S., Ostrem J.L., Galifianakis N.B., Shimamoto S., Lim D.A., et al., Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study, Brain, 2012, 135, 615–630

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bienkiewicz M.M., Rodger M.W., Young W.R., Craig C.M., Time to get a move on: overcoming bradykinetic movement in Parkinson’s disease with artificial sensory guidance generated from biological motion, Behav. Brain Res., 2013, 253, 113–120

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Pavlidou.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlidou, A., Schnitzler, A. & Lange, J. Beta oscillations and their functional role in movement perception. Translat.Neurosci. 5, 286–292 (2014). https://doi.org/10.2478/s13380-014-0236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-014-0236-4

Keywords

Navigation