Skip to main content
Log in

Promoting plasticity in the somatosensory cortex to alter motor physiology

  • Mini-Review
  • Published:
Translational Neuroscience

Abstract

Somatosensory pathways and cortices contribute to the control of human movement. In humans, non-invasive transcranial magnetic stimulation techniques to promote plasticity within somatosensory pathways and cortices have revealed potent effects on the neurophysiology within motor cortices. In this mini-review, we present evidence to indicate that somatosensory cortex is positioned to influence motor cortical circuits and as such, is an ideal target for plasticity approaches that aim to alter motor physiology and behavior in clinical populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaas J.H., Nelson R.J., Sur M., Lin C.S., Merzenich M.M., Multiple representations of the body within the primary somatosensory cortex of primates, Science, 1979, 204, 521–523

    Article  PubMed  CAS  Google Scholar 

  2. Kaas J.H., What, if anything, is SI? Organization of first somatosensory area of cortex, Physiol. Rev., 1983, 63, 206–231

    PubMed  CAS  Google Scholar 

  3. Phillips C.G., Powell T.P., Wiesendanger M., Projection from lowthreshold muscle afferents of hand and forearm to area 3a of baboon’s cortex, J. Physiol., 1971, 217, 419–446

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Krubitzer L.A., Kaas J.H., The organization and connections of somatosensory cortex in marmosets, J. Neurosci., 1990, 10, 952–974

    PubMed  CAS  Google Scholar 

  5. Nelson R.J., Sur M., Felleman D.J., Kaas J.H., Representations of the body surface in postcentral parietal cortex of Macaca fascicularis, J. Comp. Neurol., 1980, 192, 611–643

    Article  PubMed  CAS  Google Scholar 

  6. Merzenich M.M., Kaas J.H., Sur M., Lin C.S., Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus), J. Comp Neurol., 1978, 181, 41–73

    Article  PubMed  CAS  Google Scholar 

  7. Schwarz D.W., Deecke L., Fredrickson J.M., Cortical projection of group I muscle afferents to areas 2, 3a, and the vestibular field in the rhesus monkey, Exp. Brain Res., 1973, 17, 516–526

    Article  PubMed  CAS  Google Scholar 

  8. Pons T.P., Kaas J.H., Connections of area 2 of somatosensory cortex with the anterior pulvinar and subdivisions of the ventroposterior complex in macaque monkeys, J. Comp. Neurol., 1985, 240, 16–36

    Article  PubMed  CAS  Google Scholar 

  9. Fang P.C., Stepniewska I., Kaas J.H., Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti, J. Comp. Neurol., 2005, 490, 305–333

    Article  PubMed  Google Scholar 

  10. Tokuno H., Tanji J., Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: a retrograde double labeling study, J. Comp. Neurol., 1993, 333, 199–209

    Article  PubMed  CAS  Google Scholar 

  11. Jones E.G., Powell T.P., Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connexions, Brain, 1969, 92, 477–502

    Article  PubMed  CAS  Google Scholar 

  12. Jones E.G., Coulter J.D., Hendry S.H., Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys, J. Comp. Neurol., 1978, 181, 291–347

    Article  PubMed  CAS  Google Scholar 

  13. Darian-Smith C., Darian-Smith I., Burman K., Ratcliffe N., Ipsilateral cortical projections to areas 3a, 3b, and 4 in the macaque monkey, J. Comp. Neurol., 1993, 335, 200–213

    Article  PubMed  CAS  Google Scholar 

  14. DeFelipe J., Conley M., Jones E.G., Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex, J. Neurosci., 1986, 6, 3749–3766

    PubMed  CAS  Google Scholar 

  15. Galea M.P., Darian-Smith I., Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections, Cereb. Cortex, 1994, 4, 166–194

    Article  CAS  Google Scholar 

  16. Sakamoto T., Porter L.L., Asanuma H., Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning, Brain Res., 1987, 413, 360–364

    Article  PubMed  CAS  Google Scholar 

  17. Iriki A., Pavlides C., Keller A., Asanuma H., Long-term potentiation in the motor cortex, Science, 1989, 245, 1385–1387

    Article  PubMed  CAS  Google Scholar 

  18. Pavlides C., Miyashita E., Asanuma H., Projection from the sensory to the motor cortex is important in learning motor skills in the monkey, J. Neurophysiol., 1993, 70, 733–741

    PubMed  CAS  Google Scholar 

  19. Brinkman J., Colebatch J.G., Porter R., York D.H., Responses of precentral cells during cooling of post-central cortex in conscious monkeys, J. Physiol., 1985, 368, 611–625

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Widener G.L., Cheney P.D., Effects on muscle activity from microstimuli applied to somatosensory and motor cortex during voluntary movement in the monkey, J. Neurophysiol., 1997, 77, 2446–2465

    PubMed  CAS  Google Scholar 

  21. Hikosaka O., Tanaka M., Sakamoto M., Iwamura Y., Deficits in manipulative behaviors induced by local injections of muscimol in the first somatosensory cortex of the conscious monkey, Brain Res., 1985, 325, 375–380

    Article  PubMed  CAS  Google Scholar 

  22. Nelson A.J., Chen R., Digit somatotopy within cortical areas of the postcentral gyrus in humans, Cereb. Cortex, 2008, 18, 2341–2351

    Article  PubMed  Google Scholar 

  23. Takita M., Izaki Y., Jay T.M., Kaneko H., Suzuki S.S., Induction of stable long-term depression in vivo in the hippocampal-prefrontal cortex pathway, Eur. J. Neurosci., 1999, 11, 4145–4148

    Article  PubMed  CAS  Google Scholar 

  24. Huang Y.Z., Edwards M.J., Rounis E., Bhatia K.P., Rothwell J.C., Theta burst stimulation of the human motor cortex, Neuron, 2005, 45, 201–206

    Article  PubMed  CAS  Google Scholar 

  25. Goldsworthy M.R., Pitcher J.B., Ridding M.C., A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex, Clin. Neurophysiol., 2012, 123, 2256–2263

    Article  PubMed  Google Scholar 

  26. Jacobs M.F., Tsang P., Lee K.G., Asmussen M.J., Zapallow C.M., Nelson A.J., 30 Hz theta-burst stimulation over primary somatosensory cortex modulates corticospinal output to the hand, Brain Stimul., 2014, 7, 269–274

    Article  PubMed  Google Scholar 

  27. Tsang P., Jacobs M.F., Lee K.G., Asmussen M.J., Zapallow C.M., Nelson A.J., Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition, Clin. Neurophysiol., 2014, S1388-2457(14)00171-0

    Google Scholar 

  28. Ishikawa S., Matsunaga K., Nakanishi R., Kawahira K., Murayama N., Tsuji S., et al., Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials, Clin. Neurophysiol., 2007, 118, 1033–1043

    Article  PubMed  Google Scholar 

  29. Katayama T., Suppa A., Rothwell J.C., Somatosensory evoked potentials and high frequency oscillations are differently modulated by theta burst stimulation over primary somatosensory cortex in humans, Clin. Neurophysiol., 2010, 121, 2097–2103

    Article  PubMed  Google Scholar 

  30. Jacobs M.F., Zapallow C.M., Tsang P., Lee K.G., Asmussen M.J., Nelson A.J., Current direction specificity of continuous theta-burst stimulation in modulating human motor cortex excitability when applied to somatosensory cortex, Neuroreport, 2012, 23, 927–931

    Article  PubMed  Google Scholar 

  31. Tokimura H., Di Lazzaro V., Tokimura Y., Oliviero A., Profice P., Insola A., et al., Short latency inhibition of human hand motor cortex by somatosensory input from the hand, J. Physiol., 2000, 523, 503–513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Asmussen M.J., Jacobs M.F., Lee K.G., Zapallow C.M., Nelson A.J., Shortlatency afferent inhibition modulation during finger movement, PLoS One, 2013, 8, e60496

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Asmussen M.J., Zapallow C.M., Jacobs M.F., Lee K.G., Tsang P., Nelson A.J., Modulation of short-latency afferent inhibition depends on digit and task-relevance, PLoS One, 2014, 9, e104807

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kaneko T., Caria M.A., Asanuma H., Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex, J. Comp. Neurol., 1994, 345, 172–184

    Article  PubMed  CAS  Google Scholar 

  35. Di Lazzaro V., Profice P., Ranieri F., Capone F., Dileone M., Oliviero A., et al., I-wave origin and modulation, Brain Stimul., 2012, 5, 512–525

    Article  PubMed  Google Scholar 

  36. Premji A., Rai N., Nelson A., Area 5 influences excitability within the primary motor cortex in humans, PLoS One, 2011, 6, e20023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Okuda B., Tanaka H., Tomino Y., Kawabata K., Tachibana H., Sugita M., The role of the left somatosensory cortex in human hand movement, Exp. Brain Res., 1995, 106, 493–498

    Article  PubMed  CAS  Google Scholar 

  38. Stippich C., Ochmann H., Sartor K., Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging, Neurosci. Lett., 2002, 331, 50–54

    Article  PubMed  CAS  Google Scholar 

  39. Cosottini M., Pesaresi I., Piazza S., Diciotti S., Cecchi P., Fabbri S., et al., Structural and functional evaluation of cortical motor areas in amyotrophic lateral sclerosis, Exp. Neurol., 2012, 234, 169–180

    Article  PubMed  Google Scholar 

  40. Pascual-Leone A., Torres F., Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers, Brain, 1993, 116, 39–52

    Article  PubMed  Google Scholar 

  41. Bernard R.A., Goran D.A., Sakai S.T., Carr T.H., McFarlane D., Nordell B., et al., Cortical activation during rhythmic hand movements performed under three types of control: an fMRI study, Cogn. Affect. Behav. Neurosci., 2002, 2, 271–281

    Article  PubMed  CAS  Google Scholar 

  42. Naito E., Roland P.E., Grefkes C., Choi H.J., Eickhoff S., Geyer S., et al., Dominance of the right hemisphere and role of area 2 in human kinesthesia, J. Neurophysiol., 2005, 93, 1020–1034

    Article  PubMed  Google Scholar 

  43. Kaas A.L., van Mier H., Goebel R., The neural correlates of human working memory for haptically explored object orientations, Cereb. Cortex, 2007, 17, 1637–1649

    Article  PubMed  Google Scholar 

  44. Vidoni E.D., Acerra N.E., Dao E., Meehan S.K., Boyd L.A., Role of the primary somatosensory cortex in motor learning: an rTMS study, Neurobiol. Learn. Mem., 2010, 93, 532–539

    Article  PubMed  CAS  Google Scholar 

  45. Ragert P., Franzkowiak S., Schwenkreis P., Tegenthoff M., Dinse H.R., Improvement of tactile perception and enhancement of cortical excitability through intermittent theta burst rTMS over human primary somatosensory cortex, Exp. Brain Res., 2008, 184, 1–11

    Article  PubMed  Google Scholar 

  46. Platz T., Roschka S., Christel M.I., Duecker F., Rothwell J.C., Sack A.T., Early stages of motor skill learning and the specific relevance of the cortical motor system — a combined behavioural training and θ burst TMS study, Restor. Neurol. Neurosci., 2012, 30, 199–211

    PubMed  Google Scholar 

  47. Bara-Jimenez W., Shelton P., Sanger T.D., Hallett M., Sensory discrimination capabilities in patients with focal hand dystonia, Ann. Neurol., 2000, 47, 377–380

    Article  PubMed  CAS  Google Scholar 

  48. Sanger T.D., Tarsy D., Pascual-Leone A., Abnormalities of spatial and temporal sensory discrimination in writer’s cramp, Mov. Disord., 2001, 16, 94–99

    Article  PubMed  CAS  Google Scholar 

  49. Fiorio M., Tinazzi M., Bertolasi L., Aglioti S.M., Temporal processing of visuotactile and tactile stimuli in writer’s cramp, Ann. Neurol., 2003, 53, 630–635

    Article  PubMed  Google Scholar 

  50. Butterworth S., Francis S., Kelly E., McGlone F., Bowtell R., Sawle G.V., Abnormal cortical sensory activation in dystonia: an fMRI study, Mov. Disord., 2003, 18, 673–682

    Article  PubMed  Google Scholar 

  51. Nelson A.J., Blake D.T., Chen R., Digit-specific aberrations in the primary somatosensory cortex in writer’s cramp, Ann. Neurol., 2009, 66, 146–154

    Article  PubMed  Google Scholar 

  52. Bara-Jimenez W., Catalan M.J., Hallett M., Gerloff C., Abnormal somatosensory homunculus in dystonia of the hand, Ann. Neurol., 1998, 44, 828–831

    Article  PubMed  CAS  Google Scholar 

  53. Lee M.S., Kim H.S., Lyoo C.H., “Off” gait freezing and temporal discrimination threshold in patients with Parkinson disease, Neurology, 2005, 64, 670–674

    Article  PubMed  Google Scholar 

  54. Nelson A.J., Premji A., Rai N., Hoque T., Tommerdahl M., Chen R., Dopamine alters tactile perception in Parkinson’s disease, Can. J. Neurol. Sci., 2012, 39, 52–57

    PubMed  Google Scholar 

  55. Biermann-Ruben K., Miller A., Franzkowiak S., Finis J., Pollok B., Wach C., et al., Increased sensory feedback in Tourette syndrome, Neuroimage, 2012, 63, 119–125

    Article  PubMed  Google Scholar 

  56. Rizzo V., Aricò I., Liotta G., Ricciardi L., Mastroeni C., Morgante F., et al., Impairment of sensory-motor integration in patients affected by restless legs syndrome (RLS), J. Neurol., 2010, 257, 1979–1985

    Article  PubMed  Google Scholar 

  57. Patel N., Jankovic J., Hallett M., Sensory aspects of movement disorders, Lancet Neurol., 2014, 13, 100–112

    Article  PubMed  Google Scholar 

  58. Abbruzzese G., Berardelli A., Sensorimotor integration in movement disorders, Mov. Disord., 2003, 18, 231–240

    Article  PubMed  Google Scholar 

  59. Kaas J.H., The reorganization of somatosensory and motor cortex after peripheral nerve or spinal cord injury in primates, Prog. Brain Res., 2000, 128, 173–179

    Article  PubMed  CAS  Google Scholar 

  60. Kaas J.H., Qi H.X., Burish M.J., Gharbawie O.A., Onifer S.M., Massey J.M., Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord, Exp. Neurol., 2008, 209, 407–416

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jones E.G., Cortical and subcortical contributions to activitydependent plasticity in primate somatosensory cortex, Annu. Rev. Neurosci., 2000, 23, 1–37

    Article  PubMed  CAS  Google Scholar 

  62. Coq J.O., Xerri C., Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats, Exp. Brain Res., 1998, 121, 191–204

    Article  PubMed  CAS  Google Scholar 

  63. Xerri C., Merzenich M.M., Jenkins W., Santucci S., Representational plasticity in cortical area 3b paralleling tactual-motor skill acquisition in adult monkeys, Cereb. Cortex, 1999, 9, 264–276

    Article  PubMed  CAS  Google Scholar 

  64. Recanzone G.H., Merzenich M.M., Schreiner C.E., Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task, J. Neurophysiol., 1992, 67, 1071–1091

    PubMed  CAS  Google Scholar 

  65. Recanzone G.H., Merzenich M.M., Jenkins W.M., Frequency discrimination training engaging a restricted skin surface results in an emergence of a cutaneous response zone in cortical area 3a, J. Neurophysiol., 1992, 67, 1057–1070

    PubMed  CAS  Google Scholar 

  66. Recanzone G.H., Merzenich M.M., Jenkins W.M., Grajski K.A., Dinse H.R., Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task, J. Neurophysiol., 1992, 67, 1031–1056

    PubMed  CAS  Google Scholar 

  67. Recanzone G.H., Jenkins W.M., Hradek G.T., Merzenich M.M., Progressive improvement in discriminative abilities in adult owl monkeys performing a tactile frequency discrimination task, J. Neurophysiol., 1992, 67, 1015–1030

    PubMed  CAS  Google Scholar 

  68. Merzenich M.M., Nelson R.J., Stryker M.P., Cynader M.S., Schoppmann A., Zook J.M., Somatosensory cortical map changes following digit amputation in adult monkeys, J. Comp. Neurol., 1984, 224, 591–605

    Article  PubMed  CAS  Google Scholar 

  69. Allard T., Clark S.A., Jenkins W.M., Merzenich M.M., Reorganization of somatosensory area 3b representations in adult owl monkeys after digital syndactyly, J. Neurophysiol., 1991, 66, 1048–1058

    PubMed  CAS  Google Scholar 

  70. Recanzone G.H., Merzenich M.M., Dinse H.R., Expansion of the cortical representation of a specific skin field in primary somatosensory cortex by intracortical microstimulation, Cereb. Cortex, 1992, 2, 181–196

    Article  PubMed  CAS  Google Scholar 

  71. Calford M.B., Tweedale R., Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation, Nature, 1988, 332, 446–448

    Article  PubMed  CAS  Google Scholar 

  72. Calford M.B., Tweedale R., Acute changes in cutaneous receptive fields in primary somatosensory cortex after digit denervation in adult flying fox, J. Neurophysiol., 1991, 65, 178–187

    PubMed  CAS  Google Scholar 

  73. Calford M.B., Tweedale R., Immediate expansion of receptive fields of neurons in area 3b of macaque monkeys after digit denervation, Somatosens. Mot. Res., 1991, 8, 249–260

    Article  PubMed  CAS  Google Scholar 

  74. Faggin B.M., Nguyen K.T., Nicolelis M.A., Immediate and simultaneous sensory reorganization at cortical and subcortical levels of the somatosensory system, Proc. Natl. Acad. Sci. USA, 1997, 94, 9428–9433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Recanzone G.H., Allard T.T., Jenkins W.M., Merzenich M.M., Receptive-field changes induced by peripheral nerve stimulation in SI of adult cats, J. Neurophysiol., 1990, 63, 1213–1225

    PubMed  CAS  Google Scholar 

  76. Castro-Alamancos M.A., Donoghue J.P., Connors B.W., Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex, J. Neurosci., 1995, 15, 5324–5333

    PubMed  CAS  Google Scholar 

  77. Feldman D.E., Synaptic mechanisms for plasticity in neocortex, Annu. Rev. Neurosci., 2009, 32, 33–55

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Lamsa K.P., Kullmann D.M., Woodin M.A., Spike-timing dependent plasticity in inhibitory circuits, Front. Synaptic Neurosci., 2010, 2, 8

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Kullmann D.M., Lamsa K.P., LTP and LTD in cortical GABAergic interneurons: emerging rules and roles, Neuropharmacology, 2011, 60, 712–719

    Article  PubMed  CAS  Google Scholar 

  80. Bi G., Poo M., Synaptic modification by correlated activity: Hebb’s postulate revisited, Annu. Rev. Neurosci., 2001, 24, 139–166

    Article  PubMed  CAS  Google Scholar 

  81. Satow T., Mima T., Yamamoto J., Oga T., Begum T., Aso T., et al., Shortlasting impairment of tactile perception by 0.9Hz-rTMS of the sensorimotor cortex, Neurology, 2003, 60, 1045–1047

    Article  PubMed  CAS  Google Scholar 

  82. Knecht S., Ellger T., Breitenstein C., Bernd R.E., Henningsen H., Changing cortical excitability with low-frequency transcranial magnetic stimulation can induce sustained disruption of tactile perception, Biol. Psychiatry, 2003, 53, 175–179

    Article  PubMed  Google Scholar 

  83. Ragert P., Dinse H.R., Pleger B., Wilimzig C., Frombach E., Schwenkreis P., et al., Combination of 5 Hz repetitive transcranial magnetic stimulation (rTMS) and tactile coactivation boosts tactile discrimination in humans, Neurosci. Lett., 2003, 348, 105–108

    Article  PubMed  CAS  Google Scholar 

  84. Tegenthoff M., Ragert P., Pleger B., Schwenkreis P., Förster A.F., Nicolas V., et al., Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS, PLoS Biol., 2005, 3, e362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Pleger B., Blankenburg F., Bestmann S., Ruff C.C., Wiech K., Stephan K.E., et al., Repetitive transcranial magnetic stimulation-induced changes in sensorimotor coupling parallel improvements of somatosensation in humans, J. Neurosci., 2006, 26, 1945–1952

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Conte A., Rocchi L., Ferrazzano G., Leodori G., Bologna M., Li Voti P., et al., Primary somatosensory cortical plasticity and tactile temporal discrimination in focal hand dystonia, Clin. Neurophysiol., 2014, 125, 537–543

    Article  PubMed  Google Scholar 

  87. Premji A., Ziluk A., Nelson A.J., Bilateral somatosensory evoked potentials following intermittent theta-burst repetitive transcranial magnetic stimulation, BMC Neurosci., 2010, 11, 91

    Article  PubMed  PubMed Central  Google Scholar 

  88. Stefan K., Kunesch E., Cohen L.G., Benecke R., Classen J., Induction of plasticity in the human motor cortex by paired associative stimulation, Brain, 2000, 123, 572–584

    Article  PubMed  Google Scholar 

  89. Wolters A., Sandbrink F., Schlottmann A., Kunesch E., Stefan K., Cohen L.G., et al., A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex, J. Neurophysiol., 2003, 89, 2339–2345

    Article  PubMed  Google Scholar 

  90. Litvak V., Zeller D., Oostenveld R., Maris E., Cohen A., Schramm A., et al., LTP-like changes induced by paired associative stimulation of the primary somatosensory cortex in humans: source analysis and associated changes in behaviour, Eur. J. Neurosci., 2007, 25, 2862–2874

    Article  PubMed  Google Scholar 

  91. Wolters A., Schmidt A., Schramm A., Zeller D., Naumann M., Kunesch E., et al., Timing-dependent plasticity in human primary somatosensory cortex, J. Physiol, 2005, 565, 1039–1052

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Allison T., McCarthy G., Wood C.C., Williamson P.D., Spencer D.D., Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity, J. Neurophysiol., 1989, 62, 711–722

    PubMed  CAS  Google Scholar 

  93. Allison T., McCarthy G., Wood C.C., Darcey T.M., Spencer D.D., Williamson P.D., Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating shortlatency activity, J. Neurophysiol., 1989, 62, 694–710

    PubMed  CAS  Google Scholar 

  94. Guggenmos D.J., Azin M., Barbay S., Mahnken J.D., Dunham C., Mohseni P., et al., Restoration of function after brain damage using a neural prosthesis, Proc. Natl. Acad. Sci. USA, 2013, 110, 21177–21182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Hamdy S., Rothwell J.C., Aziz Q., Singh K.D., Thompson D.G., Longterm reorganization of human motor cortex driven by short-term sensory stimulation, Nat. Neurosci., 1998, 1, 64–68

    Article  PubMed  CAS  Google Scholar 

  96. Ridding M.C., Brouwer B., Miles T.S., Pitcher J.B., Thompson P.D., Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects, Exp. Brain Res., 2000, 131, 135–143

    Article  PubMed  CAS  Google Scholar 

  97. Fraser C., Power M., Hamdy S., Rothwell J., Hobday D., Hollander I., et al., Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury, Neuron, 2002, 34, 831–840

    Article  PubMed  CAS  Google Scholar 

  98. Kaelin-Lang A., Luft A.R., Sawaki L., Burstein A.H., Sohn Y.H., Cohen L.G., Modulation of human corticomotor excitability by somatosensory input, J. Physiol, 2002, 540, 623–633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  99. McDonnell M.N., Ridding M.C., Afferent stimulation facilitates performance on a novel motor task, Exp. Brain Res., 2006, 170, 109–115

    Article  PubMed  CAS  Google Scholar 

  100. Celnik P., Hummel F., Harris-Love M., Wolk R., Cohen L.G., Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke, Arch. Phys. Med. Rehabil., 2007, 88, 1369–1376

    Article  PubMed  Google Scholar 

  101. Meehan S.K., Dao E., Linsdell M.A., Boyd L.A., Continuous theta burst stimulation over the contralesional sensory and motor cortex enhances motor learning post-stroke, Neurosci. Lett., 2011, 500, 26–30

    Article  PubMed  CAS  Google Scholar 

  102. Brodie S.M., Meehan S., Borich M.R., Boyd L.A., 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke, Front Hum. Neurosci., 2014, 8, 143

    Article  PubMed  PubMed Central  Google Scholar 

  103. Siebner H.R., Tormos J.M., Ceballos-Baumann A.O., Auer C., Catala M.D., Conrad B., et al., Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp, Neurology, 1999, 52, 529–537

    Article  PubMed  CAS  Google Scholar 

  104. Murase N., Rothwell J.C., Kaji R., Urushihara R., Nakamura K., Murayama N., et al., Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer’s cramp, Brain, 2005, 128, 104–115

    Article  PubMed  Google Scholar 

  105. Sanger T.D., Pascual-Leone A., Tarsy D., Schlaug G., Nonlinear sensory cortex response to simultaneous tactile stimuli in writer’s cramp, Mov. Disord., 2002, 17, 105–111

    Article  PubMed  Google Scholar 

  106. Garraux G., Bauer A., Hanakawa T., Wu T., Kansaku K., Hallett M., Changes in brain anatomy in focal hand dystonia, Ann. Neurol., 2004, 55, 736–739

    Article  PubMed  Google Scholar 

  107. Lerner A., Shill H., Hanakawa T., Bushara K., Goldfine A., Hallett M., Regional cerebral blood flow correlates of the severity of writer’s cramp symptoms, Neuroimage, 2004, 21, 904–913

    Article  PubMed  Google Scholar 

  108. Hu X.Y., Wang L., Liu H., Zhang S.Z., Functional magnetic resonance imaging study of writer’s cramp, Chin Med. J., 2006, 119, 1263–1271

    PubMed  Google Scholar 

  109. Havrankova P., Jech R., Walker N.D., Operto G., Tauchmanova J., Vymazal J., et al., Repetitive TMS of the somatosensory cortex improves writer’s cramp and enhances cortical activity, Neuro Endocrinol. Lett., 2010, 31, 73–86

    PubMed  Google Scholar 

  110. Schneider S.A., Pleger B., Draganski B., Cordivari C., Rothwell J.C., Bhatia K.P., et al., Modulatory effects of 5Hz rTMS over the primary somatosensory cortex in focal dystonia — an fMRI-TMS study, Mov. Disord., 2010, 25, 76–83

    Article  PubMed  PubMed Central  Google Scholar 

  111. Murakami T., Muller-Dahlhaus F., Lu M.K., Ziemann U., Homeostatic metaplasticity of corticospinal excitatory and intracortical inhibitory neural circuits in human motor cortex, J. Physiol., 2012, 590, 5765–5781

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Gentner R., Wankerl K., Reinsberger C., Zeller D., Classen J., Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity, Cereb. Cortex, 2008, 18, 2046–2053

    Article  PubMed  Google Scholar 

  113. Stefan K., Gentner R., Zeller D., Dang S., Classen J., Theta-burst stimulation: remote physiological and local behavioral after-effects, Neuroimage, 2008, 40, 265–274

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimee J. Nelson.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, C.B., Nelson, A.J. Promoting plasticity in the somatosensory cortex to alter motor physiology. Translat.Neurosci. 5, 260–268 (2014). https://doi.org/10.2478/s13380-014-0230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-014-0230-x

Keywords

Navigation