Skip to main content
Log in

Simple shelter-style environmental enrichment alters behavior in mice

  • Research Article
  • Published:
Translational Neuroscience

Abstract

Environmental enrichment aims to improve the well-being of laboratory animals and provides an opportunity to improve experimental reliability and validity. Animals raised in more stimulating environments have improved learning and memory as well as more complex brain architecture. However, the effects of environmental enrichment on motor performance, anxiety and emotional development have been poorly studied. Moreover, most investigators studying the effects of enrichment provide extremely large and complex housing conditions to maximize the likelihood of finding effects. These situations are difficult to replicate across animal facilities and are not operationally practical. In this experiment, we investigated how simple, inexpensive disposable shelterstyle enrichment items alter behavior in C57Bl/6 and 129S6 mice. Breeding pairs were established in the presence of a Ketchum “Refuge”, Shepherd Shack “Dome”, or no enrichment. Offspring were assessed neurobehaviorally, either just after weaning (pre-adolescent, P22–P25), or as young adults (P60–P90). Major strain differences were observed in open field activity, elevated maze exploration, and Y-maze activity levels. The presence of the Refuge and/or Dome enrichment shelters significantly altered motor activity, coordination and some measures of anxiety. Mice housed in the presence of shelters were also less dominant than control mice in a tube test assay. Our experiments provide a detailed analysis of the effects of inexpensive and practical methods of housing enrichment on biobehavioral phenotypes in these two commonly used strains of laboratory mice, and suggest that the effects of these shelters on mouse neurobiology and behavior need to be rigorously analyzed before being adopted within vivariums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garner J.P., Stereotypies and other abnormal repetitive behaviors: potential impact on validity, reliability, and replicability of scientific outcomes, ILAR J., 2005, 46, 106–117

    Article  CAS  PubMed  Google Scholar 

  2. Newberry R.C., Environmental enrichment — increasing the biological relevance of captive environments, Appl. Anim. Behav. Sci., 1995, 44, 229–243

    Article  Google Scholar 

  3. Benaroya-Milshtein N., Apter A., Yaniv I., Kukulansky T., Raz N., Haberman Y., et al., Environmental enrichment augments the efficacy of idiotype vaccination for B-cell lymphoma, J. Immunother., 2007, 30, 517–522

    Article  PubMed  Google Scholar 

  4. Arranz L., De Castro N.M., Baeza I., Maté I., Viveros M.P., De la Fuente M., Environmental enrichment improves age-related immune system impairment: long-term exposure since adulthood increases life span in mice, Rejuvenation Res., 2010, 13, 415–428

    Article  PubMed  Google Scholar 

  5. Olsson I.A., Dahlborn K., Improving housing conditions for laboratory mice: a review of “environmental enrichment”, Lab. Anim., 2002, 36, 243–270

    Article  CAS  PubMed  Google Scholar 

  6. Gortz N., Lewejohann L., Tomm M., Ambree O., Keyvani K., Paulus W., et al., Effects of environmental enrichment on exploration, anxiety, and memory in female TgCRND8 Alzheimer mice, Behav. Brain Res., 2008, 191, 43–48

    Article  PubMed  Google Scholar 

  7. Froberg-Fejko K.M., Addressing the environmental enrichment needs of mice: thinking outside the cage, Lab. Anim., 2008, 37, 534–535

    Article  Google Scholar 

  8. Laviola G., Hannan A.J., Macri S., Solinas M., Jaber M., Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders, Neurobiol. Dis., 2008, 31, 159–168

    Article  PubMed  Google Scholar 

  9. Thiriet N., Amar L., Toussay X., Lardeux V., Ladenheim B., Becker K.G., et al., Environmental enrichment during adolescence regulates gene expression in the striatum of mice, Brain Res., 2008, 1222, 31–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kawakami K., Shimosaki S., Tongu M., Kobayashi Y., Nabika T., Nomura M., et al., Evaluation of bedding and nesting materials for laboratory mice by preference tests, Exp. Anim., 2007, 56, 363–368

    Article  CAS  PubMed  Google Scholar 

  11. Deacon R.M., Housing, husbandry and handling of rodents for behavioral experiments, Nat. Protoc., 2006, 1, 936–946

    Article  PubMed  Google Scholar 

  12. Benaroya-Milshtein N., Hollander N., Apter A., Kukulansky T., Raz N., Wilf A., et al., Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity, Eur. J. Neurosci., 2004, 20, 1341–1347

    Article  CAS  PubMed  Google Scholar 

  13. Weed J.L., Raber J.M., Balancing animal research with animal wellbeing: establishment of goals and harmonization of approaches, ILAR J., 2005, 46, 118–128

    Article  CAS  PubMed  Google Scholar 

  14. Nithianantharajah J., Hannan A.J., Enriched environments, experience-dependent plasticity and disorders of the nervous system, Nat. Rev. Neurosci., 2006, 7, 697–709

    Article  CAS  PubMed  Google Scholar 

  15. Kondo M., Gray L.J., Pelka G.J., Christodoulou J., Tam P.P., Hannan A.J., Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome—Mecp2 gene dosage effects and BDNF expression, Eur. J. Neurosci., 2008, 27, 3342–3350

    Article  PubMed  Google Scholar 

  16. Bredy T.W., Humpartzoomian R.A., Cain D.P., Meaney M.J., Partial reversal of the effect of maternal care on cognitive function through environmental enrichment, Neuroscience, 2003, 118, 571–576

    Article  CAS  PubMed  Google Scholar 

  17. Neugebauer N.M., Cunningham S.T., Zhu J., Bryant R.I., Middleton L.S., Dwoskin L.P., Effects of environmental enrichment on behavior and dopamine transporter function in medial prefrontal cortex in adult rats prenatally treated with cocaine, Dev. Brain Res., 2004, 153, 213–223

    Article  CAS  Google Scholar 

  18. Venable N., Pinto-Hamuy T., Arraztoa J.A., Contador M.T., Chellew A., Peran C., et al., Greater efficacy of preweaning than postweaning environmental enrichment on maze learning in adult rats, Behav. Brain Res., 1988, 31, 89–92

    Article  CAS  PubMed  Google Scholar 

  19. Chourbaji S., Brandwein C., Vogt M.A., Dormann C., Hellweg R., Gass P., Nature vs. nurture: can enrichment rescue the behavioural phenotype of BDNF heterozygous mice?, Behav. Brain Res., 2008, 192, 254–258

    Article  CAS  PubMed  Google Scholar 

  20. Iwata E., Kikusui T., Takeuchi Y., Mori Y., Fostering and environmental enrichment ameliorate anxious behavior induced by early weaning in Balb/c mice, Physiol. Behav., 2007, 91, 318–324

    Article  CAS  PubMed  Google Scholar 

  21. Leger M., Paizanis E., Dzahini K., Quiedeville A., Bouet V., Cassel J.C., et al., Environmental enrichment duration differentially affects behavior and neuroplasticity in adult mice, Cereb. Cortex, 2014, pii, bhu119

    Google Scholar 

  22. Cabib S., Ventura R., Puglisi-Allegra S., Opposite imbalances between mesocortical and mesoaccumbens dopamine responses to stress by the same genotype depending on living conditions, Behav. Brain Res., 2002, 129, 179–185

    Article  CAS  PubMed  Google Scholar 

  23. Lehmann M.L., Herkenham M., Environmental enrichment confers stress resiliency to social defeat through an infralimbic cortex-dependent neuroanatomical pathway, J. Neurosci., 2011, 31, 6159–6173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Nader J., Chauvet C., Rawas R.E., Favot L., Jaber M., Thiriet N., et al., Loss of environmental enrichment increases vulnerability to cocaine addiction, Neuropsychopharmacology, 2012, 37, 1579–1587

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Solinas M., Chauvet C., Thiriet N., El Rawas R., Jaber M., Reversal of cocaine addiction by environmental enrichment, Proc. Natl. Acad. Sci. USA, 2008, 105, 17145–17150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Febinger H.Y., George A., Priestley J., Toth L.A., Opp M.R., Effects of housing condition and cage change on characteristics of sleep in mice, J. Am. Assoc. Lab. Anim. Sci., 2014, 53, 29–37

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gustin R.M., Shonesy B.C., Robinson S.L., Rentz T.J., Baucum A.J.2nd, Jalan-Sakrikar N., et al., Loss of Thr286 phosphorylation disrupts synaptic CaMKIIalpha targeting, NMDAR activity and behavior in preadolescent mice, Mol. Cell. Neurosci., 2011, 47, 286–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Carpenter A.C., Saborido T.P., Stanwood G.D., Development of hyperactivity and anxiety responses in dopamine transporter-deficient mice, Dev. Neurosci., 2012, 34, 250–257

    Article  CAS  PubMed  Google Scholar 

  29. Lister R.G., Ethologically-based animal models of anxiety disorders, Pharmacol. Ther., 1990, 46, 321–340

    Article  CAS  PubMed  Google Scholar 

  30. Shepherd J.K., Grewal S.S., Fletcher A., Bill D.J., Dourish C.T., Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety, Psychopharmacology, 1994, 116, 56–64

    Article  CAS  PubMed  Google Scholar 

  31. Rodgers R.J., Cutler M.G., Jackson J.E., Behavioural effects in mice of subchronic chlordiazepoxide, maprotiline and fluvoxamine. II. The elevated plus-maze, Pharmacol. Biochem. Behav., 1997, 57, 127–136

    Article  CAS  PubMed  Google Scholar 

  32. Frederick A.L., Stanwood G.D., Drugs, biogenic amine targets and the developing brain, Dev. Neurosci., 2009, 31, 7–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Stanwood G.D., Levitt P., Waved-1 mutant mice are hypersensitive to the locomotor actions of cocaine, Synapse, 2007, 61, 259–262

    Article  CAS  PubMed  Google Scholar 

  34. Frederick A.L., Saborido T.P., Stanwood G.D., Neurobehavioral phenotyping of G(aq) knockout mice reveals impairments in motor functions and spatial working memory without changes in anxiety or behavioral despair, Front. Behav. Neurosci., 2012, 6, 29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Killinger C.E., Robinson S., Stanwood G.D., Subtle biobehavioral effects produced by paternal cocaine exposure, Synapse, 2012, 66, 902–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. McLaughlin B., Buendia M.A., Saborido T.P., Palubinsky A.M., Stankowski J.N., Stanwood G.D., Haploinsufficiency of the E3 ubiquitin ligase C-terminus of heat shock cognate 70 interacting protein (CHIP) produces specific behavioral impairments, PLoS One, 2012, 7, e36340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Veenstra-VanderWeele J., Muller C.L., Iwamoto H., Sauer J.E., Owens W.A., Shah C.R., et al., Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior, Proc. Natl. Acad. Sci. USA, 2012, 109, 5469–5474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Angoa-Pérez M., Kane M.J., Briggs D.I., Francescutti D.M., Kuhn D.M., Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice, J. Vis. Exp., 2013, 82, 50978

    PubMed  Google Scholar 

  39. Shaw P., Gogtay N., Rapoport J., Childhood psychiatric disorders as anomalies in neurodevelopmental trajectories, Hum. Brain Mapp., 2010, 31, 917–925

    Article  PubMed  Google Scholar 

  40. Sullivan R., Wilson D.A., Feldon J., Yee B.K., Meyer U., Richter-Levin G., et al., The International Society for Developmental Psychobiology annual meeting symposium: impact of early life experiences on brain and behavioral development, Dev. Psychobiol., 2006, 48, 583–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Andersen S.L., Stimulants and the developing brain, Trends Pharm. Sci., 2005, 26, 237–243

    Article  CAS  PubMed  Google Scholar 

  42. Abramov U., Puussaar T., Raud S., Kurrikoff K., Vasar E., Behavioural differences between C57BL/6 and 129S6/SvEv strains are reinforced by environmental enrichment, Neurosci. Lett., 2008, 443, 223–227

    Article  CAS  PubMed  Google Scholar 

  43. Augustsson H., van de Weerd H.A., Kruitwagen C.L., Baumans V., Effect of enrichment on variation and results in the light/dark test, Lab. Anim., 2003, 37, 328–340

    Article  CAS  PubMed  Google Scholar 

  44. Friske J.E., Gammie S.C., Environmental enrichment alters plus maze, but not maternal defense performance in mice, Physiol. Behav., 2005, 85, 187–194

    Article  CAS  PubMed  Google Scholar 

  45. Kulesskaya N., Rauvala H., Voikar V., Evaluation of social and physical enrichment in modulation of behavioural phenotype in C57BL/6J female mice, PLoS One, 2011, 6, e24755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Roy V., Belzung C., Delarue C., Chapillon P., Environmental enrichment in BALB/c mice: effects in classical tests of anxiety and exposure to a predatory odor, Physiol. Behav., 2001, 74, 313–320

    Article  CAS  PubMed  Google Scholar 

  47. Lin E.J., Choi E., Liu X., Martin A., During M.J., Environmental enrichment exerts sex-specific effects on emotionality in C57BL/6J mice, Behav. Brain Res., 2011, 216, 349–357

    Article  PubMed Central  PubMed  Google Scholar 

  48. Zhu S.W., Yee B.K., Nyffeler M., Winblad B., Feldon J., Mohammed A.H., Influence of differential housing on emotional behaviour and neurotrophin levels in mice, Behav. Brain Res., 2006, 169, 10–20

    Article  CAS  PubMed  Google Scholar 

  49. Bats S., Thoumas J.L., Lordi B., Tonon M.C., Lalonde R., Caston J., The effects of a mild stressor on spontaneous alternation in mice, Behav. Brain Res., 2001, 118, 11–15

    Article  CAS  PubMed  Google Scholar 

  50. Hughes R.N., The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory, Neurosci. Biobehav. Rev., 2004, 28, 497–505

    Article  CAS  PubMed  Google Scholar 

  51. Lalonde R., The neurobiological basis of spontaneous alternation, Neurosci. Biobehav. Rev., 2002, 26, 91–104

    Article  CAS  PubMed  Google Scholar 

  52. Coutellier L., Wurbel H., Early environmental cues affect object recognition memory in adult female but not male C57BL/6 mice, Behav. Brain Res., 2009, 203, 312–315

    Article  PubMed  Google Scholar 

  53. Mesa-Gresa P., Pérez-Martinez A., Redolat R., Environmental enrichment improves novel object recognition and enhances agonistic behavior in male mice, Aggress. Behav., 2013, 39, 269–279

    Article  PubMed  Google Scholar 

  54. Haemisch A., Gartner K., The cage design affects intermale aggression in small groups of male laboratory mice: strain specific consequences on social organization, and endocrine activations in two inbred strains (DBA/2J and CBA/J), J. Exp. Anim. Sci., 1994, 36, 101–116

    CAS  PubMed  Google Scholar 

  55. Haemisch A., Gartner K., Effects of cage enrichment on territorial aggression and stress physiology in male laboratory mice, Acta Physiol. Scand. Suppl., 1997, 640, 73–76

    CAS  PubMed  Google Scholar 

  56. Haemisch A., Voss T., Gartner K., Effects of environmental enrichment on aggressive behavior, dominance hierarchies, and endocrine states in male DBA/2J mice, Physiol. Behav., 1994, 56, 1041–1048

    Article  CAS  PubMed  Google Scholar 

  57. Barnard C.J., Behnke J.M., Sewell J., Environmental enrichment, immunocompetence, and resistance to Babesia microti in male mice, Physiol. Behav., 1996, 60, 1223–1231

    Article  CAS  PubMed  Google Scholar 

  58. Andersen S.L., Trajectories of brain development: point of vulnerability or window of opportunity?, Neurosci. Biobehav. Rev., 2003, 27, 3–18

    Article  PubMed  Google Scholar 

  59. Knudsen E.I., Sensitive periods in the development of the brain and behavior, J. Cogn. Neurosci., 2004, 16, 1412–1425

    Article  PubMed  Google Scholar 

  60. Crawley J.N., Belknap J.K., Collins A., Crabbe J.C., Frankel W., Henderson N., et al., Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies, Psychopharmacology, 1997, 132, 107–124

    Article  CAS  PubMed  Google Scholar 

  61. Contet C., Rawlins J.N., Deacon R.M., A comparison of 129S2/SvHsd and C57BL/6JOlaHsd mice on a test battery assessing sensorimotor, affective and cognitive behaviours: implications for the study of genetically modified mice, Behav. Brain Res., 2001, 124, 33–46

    Article  CAS  PubMed  Google Scholar 

  62. Colacicco G., Welzl H., Lipp H.P., Wurbel H., Attentional set-shifting in mice: modification of a rat paradigm, and evidence for strain-dependent variation, Behav. Brain Res., 2002, 132, 95–102

    Article  PubMed  Google Scholar 

  63. Rodgers R.J., Davies B., Shore R., Absence of anxiolytic response to chlordiazepoxide in two common background strains exposed to the elevated plus-maze: importance and implications of behavioural baseline, Genes Brain Behav., 2002, 1, 242–251

    Article  CAS  PubMed  Google Scholar 

  64. Camp M., Norcross M., Whittle N., Feyder M., D’Hanis W., Yilmazer-Hanke D., et al., Impaired Pavlovian fear extinction is a common phenotype across genetic lineages of the 129 inbred mouse strain, Genes Brain Behav., 2009, 8, 744–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Heinla I., Leidmaa E., Visnapuu T., Philips M.A., Vasar E., Enrichment and individual housing reinforce the differences in aggressiveness and amphetamine response in 129S6/SvEv and C57BL/6 strains, Behav. Brain Res., 2014, 267, 66–73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg D. Stanwood.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coke-Murphy, C., Buendia, M.A., Saborido, T.P. et al. Simple shelter-style environmental enrichment alters behavior in mice. Translat.Neurosci. 5, 185–196 (2014). https://doi.org/10.2478/s13380-014-0228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-014-0228-4

Keywords

Navigation