Skip to main content
Log in

Memory consolidation — Mechanisms and opportunities for enhancement

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Memory consolidation is the process by which relevant information is selected and transferred from a short-term, fragile state, into a stable, longer term domain from which it can be recalled. Effective memory underpins our ability to carry out everyday activities. When memory consolidation fails, such as in Alzheimer’s disease, the consequences can be devastating. Understanding the neurobiology of memory will help develop treatments for patients with memory loss. Here we describe the myriad processes involved in memory consolidation, including cholinergic and dopaminergic neurotransmission predominantly in hippocampal networks. We discuss established therapies as well as potential novel strategies for boosting cognition. Future approaches to enhancement of memory consolidation include not only pharmacological and neurosurgical treatments, but also lifestyle interventions — for example, modifications to sleep, exercise and diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Launer L.J., Andersen K., Dewey M.E., Letenneur L., Ott A., Amaducci L.A., et al., Rates and risk factors for dementia and Alzheimer’s disease — Results from EURODEM pooled analyses, Neurology, 1999, 52, 78–84

    CAS  PubMed  Google Scholar 

  2. Braak H., Braak E., Staging of Alzheimer’s disease-related neurofibrillary changes, Neurobiol. Aging, 1995, 16, 271–278

    CAS  PubMed  Google Scholar 

  3. Schuff N., Woerner N., Boreta L., Kornfield T., Shaw L.M., Trojanowski J.Q., et al., MRI of hippocampal volume loss in early Alzheimers disease in relation to ApoE genotype and biomarkers, Brain, 2009, 132, 1067–1077

    CAS  PubMed  Google Scholar 

  4. McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Kawas C.H., et al., The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement., 2011, 7, 263–269

    PubMed Central  PubMed  Google Scholar 

  5. Vincent A., Buckley C., Schott J.M., Baker I., Dewar B.K., Detert N., et al., Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis, Brain, 2004, 127, 701–712

    PubMed  Google Scholar 

  6. Spencer R.M.C., Gouw A.M., Ivry R.B., Age-related decline of sleepdependent consolidation, Learn. Mem., 2007, 14, 480–484

    PubMed  Google Scholar 

  7. Buzsáki G., Two-stage model of memory trace formation — a role for “noisy” brain states, Neuroscience, 1989, 31, 551–570

    PubMed  Google Scholar 

  8. Rasch B., Born J., Maintaining memories by reactivation, Curr. Opin. Neurobiol., 2007, 17, 698–703

    CAS  PubMed  Google Scholar 

  9. Stickgold R., James L., Hobson J.A., Visual discrimination learning requires sleep after training, Nat. Neurosci., 2000, 3, 1237–1238

    CAS  PubMed  Google Scholar 

  10. Fischer S., Hallschmid M., Elsner A.L., Born J., Sleep forms memory for finger skills, Proc. Natl. Acad. Sci. USA, 2002, 99, 11987–11991

    CAS  PubMed  Google Scholar 

  11. Rasch B., Buechel C., Gais S., Born J., Odor cues during slow-wave sleep prompt declarative memory consolidation, Science, 2007, 315, 1426–1429

    CAS  PubMed  Google Scholar 

  12. Buzsáki G., Hippocampal sharp waves — their origin and significance, Brain Res., 1986, 398, 242–252

    PubMed  Google Scholar 

  13. Behrens C.J., van den Boom L.P., de Hoz L., Friedman A., Heinemann U., Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks, Nat. Neurosci., 2005, 8, 1560–1567

    CAS  PubMed  Google Scholar 

  14. Sirota A., Csicsvari J., Buhl D., Buzsáki G., Communication between neocortex and hippocampus during sleep in rodents, Proc. Natl. Acad. Sci. USA, 2003, 100, 2065–2069

    CAS  PubMed  Google Scholar 

  15. Ji D., Wilson M.A., Coordinated memory replay in the visual cortex and hippocampus during sleep, Nat. Neurosci., 2007, 10, 100–107

    CAS  PubMed  Google Scholar 

  16. Peyrache A., Khamassi M., Benchenane K., Wiener S.I., Battaglia F.P., Replay of rule-learning related neural patterns in the prefrontal cortex during sleep, Nat. Neurosci., 2009, 12, 919–926

    CAS  PubMed  Google Scholar 

  17. Gauthier S., Scheltens P., Can we do better in developing new drugs for Alzheimer’s disease?, Alzheimers Dement., 2009, 5, 489–491

    PubMed  Google Scholar 

  18. Bartus R.T., Dean R.L., Beer B., Lippa A.S., The cholinergic hypothesis of geriatric memory dysfunction, Science, 1982, 217, 408–417

    CAS  PubMed  Google Scholar 

  19. Davies P., Maloney A.J.F., Selective loss of central cholinergic neurons in Alzheimer’s disease, Lancet, 1976, 2, 1403–1403

    CAS  PubMed  Google Scholar 

  20. Drachman D.A., Leavitt J., Human memory and cholinergic system — relationship to aging, Arch. Neurol., 1974, 30, 113–121

    CAS  PubMed  Google Scholar 

  21. Ellis B.W., Johns M.W., Lancaster R., Raptopoulos P., Angelopoulos N., Priest R.G., The St. Mary’s Hospital sleep questionnaire: a study of reliability, Sleep, 1981, 4, 93–97

    CAS  PubMed  Google Scholar 

  22. Bodick N.C., Offen W.W., Levey A.I., Cutler N.R., Gauthier S.G., Satlin A., et al., Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease, Arch. Neurol., 1997, 54, 465–473

    CAS  PubMed  Google Scholar 

  23. Levey A.I., Immunological localization of m1-m5 muscarinic acetylcholine-receptors in peripheral-tissues and brain, Life Sci., 1993, 52, 441–448

    CAS  PubMed  Google Scholar 

  24. Roldán G., Bolaños-Badillo E., González-Sánchez H., Quirarte G.L., Prado-Alcalá R.A., Selective M1 muscarinic receptor antagonists disrupt memory consolidation of inhibitory avoidance in rats, Neurosci. Lett., 1997, 230, 93–96

    PubMed  Google Scholar 

  25. Ferreira A.R., Fürstenau L., Blanco C., Kornisiuk E., Sánchez G., Daroit D., et al., Role of hippocampal M-1 and M-4 muscarinic receptor subtypes in memory consolidation in the rat, Pharmacol. Biochem. Behav., 2003, 74, 411–415

    PubMed  Google Scholar 

  26. Anagnostaras S.G., Murphy G.G., Hamilton S.E., Mitchell S.L., Rahnama N.P., Nathanson N.M., et al., Selective cognitive dysfunction in acetylcholine M-1 muscarinic receptor mutant mice, Nat. Neurosci., 2003, 6, 51–58

    CAS  PubMed  Google Scholar 

  27. Nissen C., Power A.E., Noftinger E.A., Feige B., Voderholzer U., Kloepfer C., et al., M-1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation, J. Cogn. Neurosci., 2006, 18, 1799–1807

    PubMed  Google Scholar 

  28. Foster N.L., Aldrich M.S., Bluemlein L., White R.F., Berent S., Failure of cholinergic agonist RS-86 to improve cognition and movement in PSP despite effects on sleep, Neurology, 1989, 39, 257–261

    CAS  PubMed  Google Scholar 

  29. Deuschl G., Schade-Brittinger C., Krack P., Volkmann J., Schäfer H., Bötzel K., et al., A randomized trial of deep-brain stimulation for Parkinson’s disease, N. Engl. J. Med., 2006, 355, 896–908

    CAS  PubMed  Google Scholar 

  30. Huys D., Möller M., Kim E.H., Hardenacke K., Huff W., Klosterkötter J., et al., Deep brain stimulation for psychiatric disorders: historical basis, Nervenarzt, 2012, 83, 1156–1168

    CAS  PubMed  Google Scholar 

  31. Laxton A.W., Tang-Wai D.F., McAndrews M.P., Zumsteg D., Wennberg R., Keren R., et al., A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s Disease, Ann. Neurol., 2010, 68, 521–534

    CAS  PubMed  Google Scholar 

  32. Suthana N., Haneef Z., Stern J., Mukamel R., Behnke E., Knowlton B., et al., Memory enhancement and deep-brain stimulation of the entorhinal area, N. Engl. J. Med., 2012, 366, 502–510

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bethus I., Tse D., Morris R.G.M., Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptordependent paired associates, J. Neurosci., 2010, 30, 1610–1618

    CAS  PubMed  Google Scholar 

  34. Chowdhury R., Guitart-Masip M., Bunzeck N., Dolan R.J., Düzel E., Dopamine modulates episodic memory persistence in old age, J. Neurosci., 2012, 32, 14193–14204

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Coulthard E.J., Bogacz R., Javed S., Mooney L.K., Murphy G., Keeley S., et al., Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making, Brain, 2012, 135, 3721–3734

    PubMed  Google Scholar 

  36. Lisman J., Grace A.A., Düzel E., A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP, Trends Neurosci., 2011, 34, 536–547

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Bernabeu R., Bevilaqua L., Ardenghi P., Bromberg E., Schmitz P., Bianchin M., et al., Involvement of hippocampal cAMP/cAMPdependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats, Proc. Natl. Acad. Sci. USA, 1997, 94, 7041–7046

    CAS  PubMed  Google Scholar 

  38. Hannestad J., Gallezot J.-D., Planeta-Wilson B., Lin S.-F., Williams W.A., van Dyck C.H., et al., Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo, Biol. Psychiatry, 2010, 68, 854–860

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Volkow N.D., Fowler J.S., Wang G., Ding Y., Gatley S.J., Mechanism of action of methylphenidate: insights from PET imaging studies, J. Atten. Disord., 2002, 6,Suppl. 1, S31–43

    PubMed  Google Scholar 

  40. Andersen M.L., Kessler E., Murnane K.S., McClung J.C., Tufik S., Howell L.L., Dopamine transporter-related effects of modafinil in rhesus monkeys, Psychopharmacology, 2010, 210, 439–448

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Outram S.M., The use of methylphenidate among students: the future of enhancement?, J. Med. Ethics, 2010, 36, 198–202

    PubMed  Google Scholar 

  42. Turner D.C., Robbins T.W., Clark L., Aron A.R., Dowson J., Sahakian B.J., Cognitive enhancing effects of modafinil in healthy volunteers, Psychopharmacology, 2003, 165, 260–269

    CAS  PubMed  Google Scholar 

  43. Linssen A.M.W., Vuurman E.F.P.M., Sambeth A., Riedel W.J., Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers, Psychopharmacology, 2012, 221, 611–619

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Berridge C.W., Devilbiss D.M., Psychostimulants as cognitive Enhancers: the prefrontal cortex, catecholamines, and attentiondeficit/ hyperactivity disorder, Biol. Psychiatry, 2011, 69, E101–111

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Pierard C., Liscia P., Chauveau F., Coutan M., Corio M., Krazem A., et al., Differential effects of total sleep deprivation on contextual and spatial memory: modulatory effects of modafinil, Pharmacol. Biochem. Behav., 2011, 97, 399–405

    CAS  PubMed  Google Scholar 

  46. Müller U., Rowe J.B., Rittman T., Lewis C., Robbins T.W., Sahakian B.J., Effects of modafinil on non-verbal cognition, task enjoyment and creative thinking in healthy volunteers, Neuropharmacology, 2013, 64, 490–495

    Google Scholar 

  47. Scammell T.E., Estabrooke I.V., McCarthy M.T., Chemelli R.M., Yanagisawa M., Miller M.S., et al., Hypothalamic arousal regions are activated during modafinil-induced wakefulness, J. Neurosci., 2000, 20, 8620–8628

    CAS  PubMed  Google Scholar 

  48. Meneses A., Ponce-Lopez T., Tellez R., Gonzalez R., Castillo C., Gasbarri A., Effects of d-amphetamine on short- and long-term memory in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rats, Behav. Brain Res., 2011, 216, 472–476

    CAS  PubMed  Google Scholar 

  49. Wiig K.A., Whitlock J.R., Epstein M.H., Carpenter R.L., Bear M.F., The levo enantiomer of amphetamine increases memory consolidation and gene expression in the hippocampus without producing locomotor stimulation, Neurobiol. Learn. Mem., 2009, 92, 106–113

    CAS  PubMed  Google Scholar 

  50. Ballard M.E., Gallo D.A., de Wit H., THC impairs, and amphetamine facilitates, memory encoding preferentially for emotionally salient stimuli, Soc. Neurosci. Abstr., 2011, 41, 752.06

    Google Scholar 

  51. Advokat C., Scheithauer M., Attention-deficit hyperactivity disorder (ADHD) stimulant medications as cognitive enhancers, Front. Neurosci., 2013, 7, 82

    PubMed Central  PubMed  Google Scholar 

  52. Sumowski J.F., Chiaravalloti N.D., Erlanger D.M., Kaushik T., Benedict R., DeLuca J., L-amphetamine improves memory capacity among memory-impaired patients with multiple sclerosis, Neurology, 2011, 76,Suppl. 4, A482

    Google Scholar 

  53. Jones S., Kornblum J.L., Kauer J.A., Amphetamine blocks long-term synaptic depression in the ventral tegmental area, J. Neurosci., 2000, 20, 5575–5580

    CAS  PubMed  Google Scholar 

  54. Del Arco A., González-Mora J.L., Armas V.R., Mora F., Amphetamine increases the extracellular concentration of glutamate in striatum of the awake rat: involvement of high affinity transporter mechanisms, Neuropharmacology, 1999, 38, 943–954

    PubMed  Google Scholar 

  55. Drevets W.C., Gautier C., Price J.C., Kupfer D.J., Kinahan P.E., Grace A.A., et al., Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria, Biol. Psychiatry, 2001, 49, 81–96

    CAS  PubMed  Google Scholar 

  56. Imperato A., Obinu M.C., Gessa G.L., Effects of cocaine and amphetamine on acetylcholine-release in the hippocampus and caudate nucleus, Eur. J. Pharmacol., 1993, 238, 377–381

    CAS  PubMed  Google Scholar 

  57. Day J.C., Fibiger H.C., Dopaminergic regulation of septohippocampal cholinergic neurons, J. Neurochem., 1994, 63, 2086–2092

    CAS  PubMed  Google Scholar 

  58. Ponomarenko A.A., Lin J.S., Selbach O., Haas H.L., Temporal pattern of hippocampal high-frequency oscillations during sleep after stimulant-evoked waking, Neuroscience, 2003, 121, 759–769

    CAS  PubMed  Google Scholar 

  59. Bekinschtein P., Cammarota M., Igaz L.M., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus, Neuron, 2007, 53, 261–277

    CAS  PubMed  Google Scholar 

  60. Rossato J.I., Bevilaqua L.R.M., Izquierdo I., Medina J.H., Cammarota M., Dopamine controls persistence of long-term memory storage, Science, 2009, 325, 1017–1020

    CAS  PubMed  Google Scholar 

  61. Pencea V., Bingaman K.D., Wiegand S.J., Luskin M.B., Infusion of brainderived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus, J. Neurosci., 2001, 21, 6706–6717

    CAS  PubMed  Google Scholar 

  62. Nagahara A.H., Merrill D.A., Coppola G., Tsukada S., Schroeder B.E., Shaked G.M., et al., Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease, Nat. Med., 2009, 15, 331–337

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Patel N.K., Gill S.S., GDNF delivery for Parkinson’s disease, Acta Neurochir. Suppl., 2007, 97, 135–154

    CAS  PubMed  Google Scholar 

  64. Donlea J.M., Thimgan M.S., Suzuki Y., Gottschalk L., Shaw P.J., Inducing sleep by remote control facilitates memory consolidation in Drosophila, Science, 2011, 332, 1571–1576

    CAS  PubMed  Google Scholar 

  65. Mathias S., Zihl J., Steiger A., Lancel M., Effect of repeated gaboxadol administration on night sleep and next-day performance in healthy elderly subjects, Neuropsychopharmacology, 2005, 30, 833–841

    CAS  PubMed  Google Scholar 

  66. Faulhaber J., Steiger A., Lancel M., The GABA(A) agonist THIP produces slow wave sleep and reduces spindling activity in NREM sleep in humans, Psychopharmacology, 1997, 130, 285–291

    CAS  PubMed  Google Scholar 

  67. Boyle J., Wolford D., Gargano C., McCrea J., Cummings C., Cerchio K., et al., Next-day residual effects of gaboxadol and flurazepam administered at bedtime: a randomized double-blind study in healthy elderly subjects, Hum. Psychopharmacol., 2009, 24, 61–71

    CAS  PubMed  Google Scholar 

  68. Dijk D.J., James L.M., Peters S., Walsh J.K., Deacon S., Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep, J. Psychopharmacol., 2010, 24, 1613–1618

    CAS  PubMed  Google Scholar 

  69. Massimini M., Ferrarelli F., Esser S.K., Riedner B.A., Huber R., Murphy M., et al., Triggering sleep slow waves by transcranial magnetic stimulation, Proc. Natl. Acad. Sci. USA, 2007, 104, 8496–8501

    CAS  PubMed  Google Scholar 

  70. Marshall L., Helgadottir H., Moelle M., Born J., Boosting slow oscillations during sleep potentiates memory, Nature, 2006, 444, 610–613

    CAS  PubMed  Google Scholar 

  71. Toni G., Riedner B.A., Hulse B.K., Ferrarelli F., Sarasso S., Enhancing sleep slow waves with natural stimuli, Medicamundi, 2010, 54, 73–79

    Google Scholar 

  72. Ngo H.-V.V., Martinetz T., Born J., Moelle M., Auditory closed-loop stimulation of the sleep slow oscillation enhances memory, Neuron, 2013, 78, 545–553

    CAS  PubMed  Google Scholar 

  73. van Praag H., Christie B.R., Sejnowski T.J., Gage F.H., Running enhances neurogenesis, learning, and long-term potentiation in mice, Proc. Natl. Acad. Sci. USA, 1999, 96, 13427–13431

    Google Scholar 

  74. van Praag H., Neurogenesis and exercise: past and future directions, Neuromolecular Med., 2008, 10, 128–140

    PubMed  Google Scholar 

  75. Berggren K.L., Kerr A.L., Iles B.W., Nye S.H., Swain R.A., Exerciseinduced angiogenesis in the CNS of Dahl Salt-Sensitive and SSBN.13 consomic rats, Soc. Neurosci. Abstr., 2008, 38, 219.10

    Google Scholar 

  76. Chaddock L., Erickson K.I., Prakash R.S., Kim J.S., Voss M.W., VanPatter M., et al., A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children, Brain Res., 2010, 1358, 172–183

    CAS  PubMed  Google Scholar 

  77. Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L., et al., Exercise training increases size of hippocampus and improves memory, Proc. Natl. Acad. Sci. USA, 2011, 108, 3017–3022

    CAS  PubMed  Google Scholar 

  78. Coles K., Tomporowski P.D., Effects of acute exercise on executive processing, short-term and long-term memory, J. Sports Sci., 2008, 26, 333–344

    PubMed  Google Scholar 

  79. Gould E., Reeves A.J., Fallah M., Tanapat P., Gross C.G., Fuchs E., Hippocampal neurogenesis in adult Old World primates, Proc. Nat. Acad. Sci. USA, 1999, 96, 5263–5267

    CAS  PubMed  Google Scholar 

  80. Amrein I., Isler K., Lipp H.-P., Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage, Eur. J. Neurosci., 2011, 34, 978–987

    PubMed  Google Scholar 

  81. Apostolova L.G., Green A.E., Babakchanian S., Hwang K.S., Chou Y.-Y., Toga A.W., et al., Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease, Alzheimer Dis. Assoc. Disord., 2012, 26, 17–27

    PubMed Central  PubMed  Google Scholar 

  82. Garcia-Mesa Y., Carlos Lopez-Ramos J., Gimenez-Llort L., Revilla S., Guerra R., Gruart A., et al., Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice, J. Alzheimers Dis., 2011, 24, 421–454

    PubMed  Google Scholar 

  83. Rodriguez J.J., Noristani H.N., Olabarria M., Fletcher J., Somerville T.D.D., Yeh C.Y., et al., Voluntary running and environmental enrichment restores impaired hippocampal neurogenesis in a triple transgenic mouse model of Alzheimer’s disease, Curr. Alzheimer Res., 2011, 8, 707–717

    CAS  PubMed  Google Scholar 

  84. Nagamatsu L.S., Chan A., Davis J.C., Beattie J.C., Beattie B.L., Graf P., et al., Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial, J. Aging Res., 2013, 861893

  85. Lautenschlager N.T., Cox K.L., Flicker L., Foster J.K., van Bockxmeer F.M., Xiao J., et al., Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial, JAMA, 2008, 300, 1027–1037

    CAS  PubMed  Google Scholar 

  86. Cassilhas R.C., Lee K.S., Fernandes J., Oliveira M.G.M., Tufik S., Meeusen R., et al., Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms, Neuroscience, 2012, 202, 309–317

    CAS  PubMed  Google Scholar 

  87. Chen D.Y., Stern S.A., Garcia-Osta A., Saunier-Rebori B., Pollonini G., Bambah-Mukku D., et al., A critical role for IGF-II in memory consolidation and enhancement, Nature, 2011, 469, 491–497

    CAS  PubMed  Google Scholar 

  88. Dash M.B., Bellesi M., Tononi G., Cirelli C., Sleep/wake dependent changes in cortical glucose concentrations, J. Neurochem., 2013, 124, 79–89

    CAS  PubMed  Google Scholar 

  89. Jones E.K., Suenram-Lea S.I., Wesnes K.A., Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults, Biol. Psychol., 2012, 89, 477–486

    PubMed  Google Scholar 

  90. Messier C., Glucose improvement of memory: a review, Eur. J. Pharmacol., 2004, 490, 33–57

    CAS  PubMed  Google Scholar 

  91. Smith M.A., Riby L.M., van Eekelen J.A.M., Foster J.K., Glucose enhancement of human memory: a comprehensive research review of the glucose memory facilitation effect, Neurosci. Biobehav. Rev., 2011, 35, 770–783

    CAS  PubMed  Google Scholar 

  92. Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Glucose facilitation of cognitive performance in healthy young adults: examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels, Psychopharmacology, 2001, 157, 46–54

    CAS  Google Scholar 

  93. Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect, Psychopharmacology, 2002, 160, 387–397

    CAS  PubMed  Google Scholar 

  94. Sunram-Lea S.I., Foster J.K., Durlach P., Perez C., The effect of retrograde and anterograde glucose administration on memory performance in healthy young adults, Behav. Brain Res., 2002, 134, 505–516

    CAS  PubMed  Google Scholar 

  95. Varady K.A., Hellerstein M.K., Alternate-day fasting and chronic disease prevention: a review of human and animal trials, Am. J. Clin. Nutr., 2007, 86, 7–13

    CAS  PubMed  Google Scholar 

  96. Partridge L., Piper M.D.W., Mair W., Dietary restriction in Drosophila, Mech. Ageing Dev., 2005, 126, 938–950

    CAS  PubMed  Google Scholar 

  97. Mattison J.A., Roth G.S., Beasley T.M., Tilmont E.M., Handy A.M., Herbert R.L., et al., Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study, Nature, 2012, 489, 318–321

    CAS  PubMed  Google Scholar 

  98. Weindruch R., Walford R.L., Fligiel S., Guthrie D., The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy-intake, J. Nutr., 1986, 116, 641–654

    CAS  PubMed  Google Scholar 

  99. Colman R.J., Anderson R.M., Johnson S.C., Kastman E.K., Kosmatka K.J., Beasley T.M., et al., Caloric restriction delays disease onset and mortality in rhesus monkeys, Science, 2009, 325, 201–204

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Eckles-Smith K., Clayton D., Bickford P., Browning M.D., Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression, Mol. Brain Res., 2000, 78, 154–162

    CAS  PubMed  Google Scholar 

  101. Singh R., Lakhanpal D., Kumar S., Sharma S., Kataria H., Kaur M., et al., Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats, Age, 2012, 34, 917–933

    CAS  PubMed  Google Scholar 

  102. Qin W., Chachich M., Lane M., Roth G., Bryant M., de Cabo R., et al., Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus), J. Alzheimers Dis., 2006, 10, 417–422

    CAS  PubMed  Google Scholar 

  103. Wu P., Shen Q., Dong S., Xu Z., Tsien J.Z., Hu Y., Calorie restriction ameliorates neurodegenerative phenotypes in forebrain-specific presenilin-1 and presenilin-2 double knockout mice, Neurobiol. Aging, 2008, 29, 1502–1511

    CAS  PubMed  Google Scholar 

  104. Thaler S., Choragiewicz T.J., Rejdak R., Fiedorowicz M., Turski W.A., Tulidowicz-Bielak M., et al., Neuroprotection by acetoacetate and beta-hydroxybutyrate against NMDA-induced RGC damage in ratpossible involvement of kynurenic acid, Graefes Arch. Clin. Exp. Ophthal., 2010, 248, 1729–1735

    CAS  Google Scholar 

  105. Henderson S.T., Ketone bodies as a therapeutic for Alzheimer’s disease, Neurotherapeutics, 2008, 5, 470–480

    CAS  PubMed  Google Scholar 

  106. Reger M.A., Henderson S.T., Hale C., Cholerton B., Baker L.D., Watson G.S., et al., Effects of beta-hydroxybutyrate on cognition in memoryimpaired adults, Neurobiol. Aging, 2004, 25, 311–314

    CAS  PubMed  Google Scholar 

  107. Dhurandhar E.J., Allison D.B., van Groen T., Kadish I., Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer’s disease pathology in a mouse model, PLoS One, 2013, 8, e60437

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Cao D.H., Kevala K., Kim J., Moon H.S., Jun S.B., Lovinger D., et al., Docosahexaenoic acid promotes hippocampal neuronal development and synaptic function, J. Neurochem., 2009, 111, 510–521

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Bhatia H.S., Agrawal R., Sharma S., Huo Y.-X., Ying Z., Gomez-Pinilla F., Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood, PLoS One, 2011, 6, e28451

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Vines A., Delattre A.M., Lima M.M.S., Rodrigues L.S., Suchecki D., Machado R.B., et al., The role of 5-HT1A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism, Neuropharmacology, 2012, 62, 184–191

    CAS  PubMed  Google Scholar 

  111. Arsenault D., Julien C., Tremblay C., Calon F., DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice, PLoS One, 2011, 6, e17397

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Netasha Shaikh.

About this article

Cite this article

Shaikh, N., Coulthard, E. Memory consolidation — Mechanisms and opportunities for enhancement. Translat.Neurosci. 4, 448–457 (2013). https://doi.org/10.2478/s13380-013-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-013-0140-3

Keywords

Navigation