Skip to main content

Gabapentin is neuroprotective through glutamate receptor-independent mechanisms in staurosporine-induced apoptosis of cultured rat cerebellar neurons

Abstract

The anticonvulsants that are currently available modulate the activity of neuronal receptors and ion channels, which are equally involved in apoptotic pathways. We investigated the hypothesis that gabapentin (GP), an anticonvulsant without effect on glutamate receptors acting as GABA analog, has neuroprotective properties. For comparison, we chose topiramate (TPM), which has been reported to be neuroprotective via AMPA receptors blockade. For this purpose, we used rat cerebellar granule neuron (CGN) cultures and we triggered apoptosis independent of glutamate receptors with staurosporine, a broad-spectrum protein kinase inhibitor. GP at therapeutic range concentration significantly increased cell viability in CGN cultures maintained in physiological KCl concentration and reversed apoptosis induced by staurosporine. Blockade of NMDA or AMPA receptors by MK801 or NBQX, respectively, did not alter GP neuroprotection, which was reversed instead by GABA. In contrast, protective effect of TPM on STS-treated CGN cultures was annihilated by NBQX, and not altered by MK801 or GABA. Treatments with neuroprotective concentrations of GP or TPM did not modify the expression of neuronal cell adhesion molecule or synaptophysin or the morphological aspect of neuronal endings. In summary, we report that GP is neuroprotective through glutamate-receptor independent mechanisms and without alteration of neuronal plasticity markers, which makes it a possible candidate for clinical neuroprotection trials.

This is a preview of subscription content, access via your institution.

References

  1. Bredesen D.E., Rao R.V., Mehlen P., Cell death in the nervous system, Nature, 2006, 443, 796–802

    Article  CAS  PubMed  Google Scholar 

  2. Almeida A., Genetic determinants of neuronal vulnerability to apoptosis, Cell. Mol. Life Sci., 2013, 70, 71–88

    Article  CAS  PubMed  Google Scholar 

  3. Martinez-Vila E., Irimia P., The cost of stroke, Cerebrovasc. Dis., 2004, 17Suppl. 1, 124–129

    Article  PubMed  Google Scholar 

  4. Muresanu D.F., Buzoianu A., Florian S.I., von Wild T., Towards a roadmap in brain protection and recovery, J. Cell. Mol. Med., 2012, 16, 2861–2871

    Article  CAS  PubMed  Google Scholar 

  5. Rahn K.A., Slusher B.S., Kaplin A.I., Glutamate in CNS neurodegeneration and cognition and its regulation by GCPII inhibition, Curr. Med. Chem., 2012, 19, 1335–1345

    Article  CAS  PubMed  Google Scholar 

  6. Johannessen Landmark C., Antiepileptic drugs in non-epilepsy disorders: relations between mechanisms of action and clinical efficacy, CNS Drugs, 2008, 22, 27–47

    Article  PubMed  Google Scholar 

  7. Pitkänen A., Kubova H., Antiepileptic drugs in neuroprotection, Expert Opin. Pharmacother., 2004, 5, 777–798

    Article  PubMed  Google Scholar 

  8. Latini G., Verrotti A., Manco R., Scardapane A., Del Vecchio A., Chiarelli F., Topiramate: its pharmacological properties and therapeutic efficacy in epilepsy, Mini Rev. Med. Chem., 2008, 8, 10–23

    Article  CAS  PubMed  Google Scholar 

  9. Sills G.J., The mechanisms of action of gabapentin and pregabalin, Curr. Opin. Pharmacol., 2006, 6, 108–113

    Article  CAS  PubMed  Google Scholar 

  10. Thorpe A.J., Offord J., The alpha2-delta protein: an auxiliary subunit of voltage-dependent calcium channels as a recognized drug target, Curr. Opin. Investig. Drugs, 2010, 11, 761–770

    CAS  PubMed  Google Scholar 

  11. Lagrèze W.A., Müller-Velten R., Feurstein T.J., The neuroprotective properties of gabapentin-lactam, Graef. Arch. Clin. Exp. Ophthalmol., 2001, 239, 845–849

    Article  Google Scholar 

  12. Pitkänen A., Efficacy of current antiepileptics to prevent neurodegeneration in epilepsy models, Epilepsy Res., 2002, 50, 141–160

    Article  PubMed  Google Scholar 

  13. Trojnar M.K., Malek R., Chroscinska M., Nowak S., Blaszczyk B., Czuczwar S.J., Neuroprotective effects of antiepileptic drugs, Pol. J. Pharmacol., 2002, 54, 557–566

    CAS  PubMed  Google Scholar 

  14. Baydas G., Sonkaya E., Tuzcu M., Yasar A., Donder E., Novel role for gabapentin in neuroprotection of central nervous system in streptozotocine-induced diabetic rats, Acta Pharmacol. Sin., 2005, 26, 417–422

    Article  CAS  PubMed  Google Scholar 

  15. Kale A., Börcek A.Ö., Emmez H., Yildirim Z., Durdağ E., Lortlar N., et al., Neuroprotective effects of gabapentin on spinal cord ischemiareperfusion injury in rabbits, J. Neurosurg. Spine, 2011, 15, 228–237

    Article  PubMed  Google Scholar 

  16. Rekling J.C., Neuroprotective effects of anticonvulsants in rat hippocampal slice cultures exposed to oxygen/glucose deprivation, Neurosci. Lett., 2003, 335, 167–170

    Article  CAS  PubMed  Google Scholar 

  17. Williams A.J., Bautista C.C., Chen R.W., Dave J.R., Lu X.C., Tortella F.C., et al., Evaluation of gabapentin and ethosuximide for treatment of acute nonconvulsive seizures following ischemic brain injury in rats, J. Pharmacol. Exp. Ther., 2006, 318, 947–955

    Article  CAS  PubMed  Google Scholar 

  18. Frisch C., Kudin A.P., Elger C.E., Kunz W.S., Helmstaedter C., Amelioration of water maze performance deficits by topiramate applied during pilocarpine-induced status epilepticus is negatively dose-dependent, Epilepsy Res., 2006, 73, 173–180

    Article  PubMed  Google Scholar 

  19. Francois J., Koning E., Ferrandon A., Nehlig A., The combination of topiramate and diazepam is partially neuroprotective in the hippocampus but not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy, Epilepsy Res., 2006, 72, 147–163

    Article  CAS  PubMed  Google Scholar 

  20. Schubert S., Brandl U., Brodhun M., Ulrich C., Spaltmann J., Fiedler N., et al., Neuroprotective effects of topiramate after hypoxia-ischemia in newborn piglets, Brain Res., 2005, 1058, 129–136

    Article  CAS  PubMed  Google Scholar 

  21. Costa C., Martella G., Picconi B., Prosperetti C., Pisani A., Di Filippo M., et al., Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia, Stroke, 2006, 37, 1319–1326

    Article  CAS  PubMed  Google Scholar 

  22. Contestabile A., Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro, Cerebellum, 2002, 1, 41–55

    Article  CAS  PubMed  Google Scholar 

  23. Koh J.Y., Wie M.B., Gwag B.J., Sensi S.L., Canzoniero L.M., Demaro J., et al., Staurosporine-induced neuronal apoptosis, Exp. Neurol., 1995, 135, 153–159

    Article  CAS  PubMed  Google Scholar 

  24. Follett P.L., Deng W., Dai W., Talos D.M., Massillon L.J., Rosenberg P.A., et al., Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate, J. Neurosci., 2004, 24, 4412–4420

    Article  CAS  PubMed  Google Scholar 

  25. Gerrow K., El-Husseini A., Cell adhesion molecules at the synapse, Front. Biosci., 2006, 11, 2400–2419

    Article  CAS  PubMed  Google Scholar 

  26. Rao J.S., Kellom M., Kim H.W., Rapoport S.I., Reese E.A., Neuroinflammation and synaptic loss, Neurochem. Res., 2012, 37, 903–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Popescu A.T., Vidulescu C., Stanciu C.L., Popescu B.O., Popescu L.M., Selective protection by phosphatidic acid against staurosporineinduced apoptosis, J. Cell. Mol. Med., 2002, 6, 433–438

    Article  CAS  PubMed  Google Scholar 

  28. Gatti G., Ferrari A.R, Guerrini R., Bonanni P., Bonomi I., Perucca E., Plasma gabapentin concentrations in children with epilepsy: influence of age, relationship with dosage, and preliminary observations on correlation with clinical response, Ther. Drug Monit., 2003, 25, 54–60

    Article  CAS  PubMed  Google Scholar 

  29. Ferrari A.R., Guerrini R., Gatti G., Alessandri M.G., Bonanni P., Perucca E., Influence of dosage, age, and co-medication on plasma topiramate concentrations in children and adults with severe epilepsy and preliminary observations on correlations with clinical response, Ther. Drug Monit., 2003, 25, 700–708

    Article  CAS  PubMed  Google Scholar 

  30. Mosmann T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and citotoxicity assays, J. Immunol. Methods, 1983, 65, 55–63

    Article  CAS  PubMed  Google Scholar 

  31. Grayson D.R., Zhu W., Harris B.T., Vicini S., Zheng T., Differentially expressed GABAA-receptor subunits result in structurally and functionally receptor assemblies following excitatory afferent synaptic transmission, Perspect. Dev. Neurobiol., 1998, 5, 193–205

    CAS  PubMed  Google Scholar 

  32. Gallo V., Kingsbury A., Balázs R., Jørgensen O.S., The role of depolarization in the survival and differentiation of cerebellar granule cells in culture, J. Neurosci., 1987, 7, 2203–2213

    CAS  PubMed  Google Scholar 

  33. Franco-Cea A., Valencia A., Sánchez-Armass S., Domínguez G., Morán J., Role of ionic fluxes in the apoptotic cell death of cultured cerebellar granule neurons, Neurochem. Res., 2004, 29, 227–238

    Article  CAS  PubMed  Google Scholar 

  34. Prehn J.H., Jordán J., Ghadge G.D., Preis E., Galindo M.F., Roos R.P., et al., Ca2+ and reactive oxygen species in staurosporine-induced neuronal apoptosis, J. Neurochem., 1997, 68, 1679–1685

    Article  CAS  PubMed  Google Scholar 

  35. Paoletti P., Bellone C., Zhou Q., NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease, Nat. Rev. Neurosci., 2013, 14, 383–400

    Article  CAS  PubMed  Google Scholar 

  36. Monaco E.A., Vallano M.L., Roscovitine triggers excitotoxicity in cultured granule neurons by enhancing glutamate release, Mol. Pharmacol., 2005, 68, 1331–1342

    Article  CAS  PubMed  Google Scholar 

  37. Ikonomovic S., Kharlamov E., Manev H., Ikonomovic M.D., Grayson D.R., GABA and NMDA in the prevention of apoptotic-like cell death in vitro, Neurochem. Int., 1997, 31, 283–290

    Article  CAS  PubMed  Google Scholar 

  38. Babot Z., Cristòfol R., Suñol C., Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acidsensitive chloride channels, Eur. J. Neurosci., 2005, 21, 103–112

    Article  PubMed  Google Scholar 

  39. Borodinsky L.N., O’Leary D., Neale J.H., Vicini S., Coso O.A., Fiszman M.L., GABA-induced neurite outgrowth of cerebellar granule cells is mediated by GABA(A) receptor activation, calcium influx and CaMKII and erk1/2 pathways, J. Neurochem., 2003, 84, 1411–1420

    Article  CAS  PubMed  Google Scholar 

  40. Mirnics Z.K., Yan C., Portugal C., Kim T.W., Saragovi H.U., Sisodia S.S., et al., P75 neurotrophin receptor regulates expression of neural cell adhesion molecule 1, Neurobiol. Dis., 2005, 20, 969–985

    Article  CAS  PubMed  Google Scholar 

  41. Kolkova K., Stensman H., Berezin V., Bock E., Larsson C., Distinct roles of PKC isoforms in NCAM-mediated neurite outgrowth, J. Neurochem., 2005, 92, 886–894

    Article  CAS  PubMed  Google Scholar 

  42. Seidenfaden R., Krauter A., Hildebrandt H., The neural cell adhesion molecule NCAM regulates neuritogenesis by multiple mechanisms of interaction, Neurochem. Int., 2006, 49, 1–11

    Article  CAS  PubMed  Google Scholar 

  43. Conboy L., Foley A.G., O’Boyle N.M., Lawlor M., Gallagher H.C., Murphy K.J., et al., Curcumin-induced degradation of PKC delta is associated with enhanced dentate NCAM PSA expression and spatial learning in adult and aged Wistar rats Biochem. Pharmacol., 2009, 77, 1254–1265

    CAS  Google Scholar 

  44. Tariot P.N., Loy R., Ryan J.M., Porsteinsson A., Ismail S., Mood stabilizers in Alzheimer’s disease: symptomatic and neuroprotective rationales, Adv. Drug Deliv. Rev., 2002, 54, 1567–1577

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan O. Popescu.

About this article

Cite this article

Popescu, B.O., Ţuineag, M. & Stoica, R. Gabapentin is neuroprotective through glutamate receptor-independent mechanisms in staurosporine-induced apoptosis of cultured rat cerebellar neurons. Translat.Neurosci. 4, 429–436 (2013). https://doi.org/10.2478/s13380-013-0139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-013-0139-9

Keywords

  • Antiepileptic drugs
  • Gabapentin
  • Topiramate
  • Neuroprotection
  • Apoptosis
  • Neurodegeneration