Skip to main content
Log in

Breath-hold diving as a brain survival response

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Elite breath-hold divers are unique athletes challenged with compression induced by hydrostatic pressure and extreme hypoxia/hypercapnia during maximal field dives. The current world records for men are 214 meters for depth (Herbert Nitsch, No-Limits Apnea discipline), 11:35 minutes for duration (Stephane Mifsud, Static Apnea discipline), and 281 meters for distance (Goran Čolak, Dynamic Apnea with Fins discipline). The major physiological adaptations that allow breath-hold divers to achieve such depths and duration are called the “diving response” that is comprised of peripheral vasoconstriction and increased blood pressure, bradycardia, decreased cardiac output, increased cerebral and myocardial blood flow, splenic contraction, and preserved O2 delivery to the brain and heart. This complex of physiological adaptations is not unique to humans, but can be found in all diving mammals. Despite these profound physiological adaptations, divers may frequently show hypoxic loss of consciousness. The breath-hold starts with an easy-going phase in which respiratory muscles are inactive, whereas during the second so-called “struggle” phase, involuntary breathing movements start. These contractions increase cerebral blood flow by facilitating left stroke volume, cardiac output, and arterial pressure. The analysis of the compensatory mechanisms involved in maximal breath-holds can improve brain survival during conditions involving profound brain hypoperfusion and deoxygenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindholm P., Loss of motor control and/or loss of consciousness during breath-hold competitions, Int. J. Sports Med., 2007, 28, 295–299

    Article  PubMed  CAS  Google Scholar 

  2. Dujic Z., Breskovic T., Impact of breath holding on cardiovascular respiratory and cerebrovascular health, Sports Med., 2012, 42, 459–472

    Article  PubMed  Google Scholar 

  3. Muth C.M., Radermacher P., Pittner A., Steinacker J., Schabana R., Hamich S., et al., Arterial blood gases during diving in elite apnea divers, Int. J. Sports Med., 2003, 24, 104–107

    Article  PubMed  CAS  Google Scholar 

  4. Breskovic T., Uglesic L., Zubin P., Kuch B., Kraljevic J., Zanchi J., et al., Cardiovascular changes during underwater static and dynamic breath-hold dives in trained divers, J. Appl. Physiol, 2011, 111, 673–678

    Article  PubMed  Google Scholar 

  5. Kuch B., Koss B., Dujic Z., Buttazzo G., Sieber A., A novel wearable apnea dive computer for continuous plethysmographic monitoring of oxygen saturation and heart rate, Diving. Hyperb. Med., 2010, 40, 34–40

    PubMed  Google Scholar 

  6. Tocco F., Marongiu E., Pinna M., Roberto S., Pusceddu M., Angius L., et al., Assessment of circulatory adjustments during underwater apnoea in elite divers by means of a portable device, Acta. Physiol. (Oxf), 2013, 207, 290–298

    Article  CAS  Google Scholar 

  7. Lindholm P., Nyren S., Studies on inspiratory and expiratory glossopharyngeal breathing in breath-hold divers employing magnetic resonance imaging and spirometry, Eur. J. Appl. Physiol, 2005, 94, 646–651

    Article  PubMed  Google Scholar 

  8. Novalija J., Lindholm P., Loring S.H., Diaz E., Fox J.A., Ferrigno M., Cardiovascular aspects of glossopharyngeal insufflation and exsufflation, Undersea Hyperb. Med., 2007, 34, 415–423

    PubMed  CAS  Google Scholar 

  9. Ferrigno M., Hickey D.D., Liner M.H., Lundgren C.E., Cardiac performance in humans during breath holding, J. Appl. Physiol, 1986, 60, 1871–1877

    PubMed  CAS  Google Scholar 

  10. Potkin R., Cheng V., Siegel R., Effects of glossopharyngeal insufflation on cardiac function: an echocardiographic study in elite breath-hold divers, J. Appl. Physiol, 2007, 103, 823–827

    Article  PubMed  Google Scholar 

  11. Batinic T., Utz W., Breskovic T., Jordan J., Schulz-Menger J., Jankovic S., et al., Cardiac magnetic resonance imaging during pulmonary hyperinflation in apnea divers, Med. Sci. Sports Exerc., 2011, 43, 2095–2101

    Article  PubMed  Google Scholar 

  12. Palada I., Bakovic D., Valic Z., Obad A., Ivancev V., Eterovic D., et al., Restoration of hemodynamics in apnea struggle phase in association with involuntary breathing movements, Respir. Physiol. Neurobiol., 2008, 161, 174–181

    Article  PubMed  Google Scholar 

  13. Palada I., Obad A., Bakovic D., Valic Z., Ivancev V., Dujic Z., Cerebral and peripheral hemodynamics and oxygenation during maximal dry breath-holds, Respir. Physiol. Neurobiol., 2007, 157, 374–381

    Article  PubMed  Google Scholar 

  14. Bakovic D., Valic Z., Eterovic D., Vukovic I., Obad A., Marinovic-Terzic I., et al., Spleen volume and blood flow response to repeated breathhold apneas, J. Appl. Physiol., 2003, 95, 1460–1466

    PubMed  Google Scholar 

  15. Heusser K., Dzamonja G., Tank J., Palada I., Valic Z., Bakovic D., et al., Cardiovascular regulation during apnea in elite divers, Hypertension, 2009, 53, 719–724

    Article  PubMed  CAS  Google Scholar 

  16. Joulia F., Steinberg J.G., Wolff F., Gavarry O., Jammes Y., Reduced oxidative stress and blood lactic acidosis in trained breath-hold human divers, Respir. Physiol. Neurobiol., 2002, 133, 121–130

    Article  PubMed  CAS  Google Scholar 

  17. Liner M.H., Ferrigno M., Lundgren C.E., Alveolar gas exchange during simulated breath-hold diving to 20 m, Undersea Hyperb. Med., 1993, 20, 27–38

    PubMed  CAS  Google Scholar 

  18. Ferretti G., Extreme human breath-hold diving, Eur. J. Appl. Physiol., 2001, 84, 254–271

    Article  PubMed  CAS  Google Scholar 

  19. Fagius J., Sundlof G., The diving response in man: effects on sympathetic activity in muscle and skin nerve fascicles, J. Physiol., 1986, 377, 429–443

    PubMed  CAS  Google Scholar 

  20. Kiviniemi A.M., Breskovic T., Uglesic L., Kuch B., Maslov P.Z., Sieber A., et al., Heart rate variability during static and dynamic breath-hold dives in elite divers, Auton. Neurosci., 2012, 169, 95–101

    Article  PubMed  Google Scholar 

  21. Schagatay E., Andersson J.P., Hallen M., Palsson B., Selected contribution: role of spleen emptying in prolonging apneas in humans, J. Appl. Physiol., 2001, 90, 1623–1629

    PubMed  CAS  Google Scholar 

  22. Palada I., Eterovic D., Obad A., Bakovic D., Valic Z., Ivancev V., et al., Spleen and cardiovascular function during short apneas in divers, J. Appl. Physiol., 2007, 103, 1958–1963

    Article  PubMed  Google Scholar 

  23. Dujic Z., Uglesic L., Breskovic T., Valic Z., Heusser K., Marinovic J., et al., Involuntary breathing movements improve cerebral oxygenation during apnea struggle phase in elite divers, J. Appl. Physiol., 2009, 107, 1840–1846

    Article  PubMed  Google Scholar 

  24. Ferrigno M., Ferretti G., Ellis A., Warkander D., Costa M., Cerretelli P., et al., Cardiovascular changes during deep breath-hold dives in a pressure chamber, J. Appl. Physiol., 1997, 83, 1282–1290

    PubMed  CAS  Google Scholar 

  25. Sieber A., L’abbate A., Passera M., Garbella E., Benassi A., Bedini R., Underwater study of arterial blood pressure in breath-hold divers, J. Appl. Physiol., 2009, 107, 1526–1531

    Article  PubMed  Google Scholar 

  26. Perini R., Gheza A., Moia C., Sponsiello N., Ferretti G., Cardiovascular time courses during prolonged immersed static apnoea, Eur. J. Appl. Physiol., 2010, 110, 277–283

    Article  PubMed  Google Scholar 

  27. Irving L., Bradycardia in Human Divers, J. Appl. Physiol., 1963, 18, 489–491

    Google Scholar 

  28. Hong S.K., Song S.H., Kim P.K., Suh C.S., Seasonal observations on the cardiac rhythm during diving in the Korean ama, J. Appl. Physiol., 1967, 23, 18–22

    PubMed  CAS  Google Scholar 

  29. Somers V.K., Mark A.L., Zavala D.C., Abboud F.M., Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans, J. Appl. Physiol., 1989, 67, 2101–2106

    PubMed  CAS  Google Scholar 

  30. Lindholm P., Lundgren C.E., Alveolar gas composition before and after maximal breath-holds in competitive divers, Undersea Hyperb. Med., 2006, 33, 463–467

    PubMed  CAS  Google Scholar 

  31. Overgaard K., Friis S., Pedersen R.B., Lykkeboe G., Influence of lung volume, glossopharyngeal inhalation and P(ET) O2 and P(ET) CO2 on apnea performance in trained breath-hold divers, Eur. J. Appl. Physiol., 2006, 97, 158–164

    Article  PubMed  Google Scholar 

  32. Macefield V.G., Wallin B.G., Effects of static lung inflation on sympathetic activity in human muscle nerves at rest and during asphyxia, J. Auton. Nerv. Syst., 1995, 53, 148–156

    Article  PubMed  CAS  Google Scholar 

  33. Morgan B.J., Denahan T., Ebert T.J., Neurocirculatory consequences of negative intrathoracic pressure vs. asphyxia during voluntary apnea, J. Appl. Physiol., 1993, 74, 2969–2975

    PubMed  CAS  Google Scholar 

  34. Breskovic T., Ivancev V., Banic I., Jordan J., Dujic Z., Peripheral chemoreflex sensitivity and sympathetic nerve activity are normal in apnea divers during training season, Auton. Neurosci., 2010, 154, 42–47

    Article  PubMed  Google Scholar 

  35. Breskovic T., Valic Z., Lipp A., Heusser K., Ivancev V., Tank J., et al., Peripheral chemoreflex regulation of sympathetic vasomotor tone in apnea divers, Clin. Auton. Res., 2010, 20, 57–63

    Article  PubMed  Google Scholar 

  36. Breskovic T., Steinback C.D., Salmanpour A., Shoemaker J.K., Dujic Z., Recruitment pattern of sympathetic neurons during breath-holding at different lung volumes in apnea divers and controls, Auton. Neurosci., 2011, 164, 74–81

    Article  PubMed  Google Scholar 

  37. Steinback C.D., Breskovic T., Banic I., Dujic Z., Shoemaker J.K., Autonomic and cardiovascular responses to chemoreflex stress in apnoea divers, Auton. Neurosci., 2010, 156, 138–143

    Article  PubMed  Google Scholar 

  38. Dujic Z., Ivancev V., Heusser K., Dzamonja G., Palada I., Valic Z., et al., Central chemoreflex sensitivity and sympathetic neural outflow in elite breath-hold divers, J. Appl. Physiol., 2008, 104, 205–211

    Article  PubMed  Google Scholar 

  39. Macefield V.G., Wallin B.G., Firing properties of single vasoconstrictor neurones in human subjects with high levels of muscle sympathetic activity, J. Physiol., 1999, 516, 293–301

    Article  PubMed  CAS  Google Scholar 

  40. Elam M., Sverrisdottir Y.B., Rundqvist B., McKenzie D., Wallin B.G., Macefield V.G., Pathological sympathoexcitation: how is it achieved?, Acta Physiol. Scand., 2003, 177, 405–411

    Article  PubMed  CAS  Google Scholar 

  41. Salmanpour A., Brown L.J., Shoemaker J.K., Spike detection in human muscle sympathetic nerve activity using a matched wavelet approach, J. Neurosci. Methods, 2010, 193, 343–355

    Article  PubMed  Google Scholar 

  42. Steinback C.D., Salmanpour A., Breskovic T., Dujic Z., Shoemaker J.K., Sympathetic neural activation: an ordered affair, J. Physiol., 2010, 588, 4825–4836

    Article  PubMed  CAS  Google Scholar 

  43. Henneman E., Somjen G., Carpenter D.O., Functional siginifcance of cell size in spinal motoneurons, J. Neurophysiol., 1965, 28, 560–580

    PubMed  CAS  Google Scholar 

  44. Salmanpour A., Brown L.J., Steinback C.D., Usselman C.W., Goswami R., Shoemaker J.K., Relationship between size and latency of action potentials in human muscle sympathetic nerve activity, J. Neurophysiol., 2011, 105, 2830–2842

    Article  PubMed  Google Scholar 

  45. Pan A.W., He J., Kinouchi Y., Yamaguchi H., Miyamoto H., Blood flow in the carotid artery during breath-holding in relation to diving bradycardia, Eur. J. Appl. Physiol. Occup. Physiol., 1997, 75, 388–395

    Article  PubMed  CAS  Google Scholar 

  46. Przybylowski T., Bangash M.F., Reichmuth K., Morgan B.J., Skatrud J.B., Dempsey J.A., Mechanisms of the cerebrovascular response to apnoea in humans, J. Physiol., 2003, 548, 323–332

    PubMed  CAS  Google Scholar 

  47. Vantanajal J.S., Ashmead J.C., Anderson T.J., Hepple R.T., Poulin M.J., Differential sensitivities of cerebral and brachial blood flow to hypercapnia in humans, J. Appl. Physiol., 2007, 102, 87–93

    Article  PubMed  Google Scholar 

  48. Ainslie P.N., Barach A., Murrell C., Hamlin M., Hellemans J., Ogoh S., Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise, Am. J. Physiol. Heart Circ. Physiol., 2007, 292, H976–H983

    Article  PubMed  CAS  Google Scholar 

  49. Andersson J.P., Liner M.H., Jonsson H., Increased serum levels of the brain damage marker S100B after apnea in trained breath-hold divers: a study including respiratory and cardiovascular observations, J. Appl. Physiol., 2009, 107, 809–815

    Article  PubMed  Google Scholar 

  50. Riuzzi F., Sorci G., Beccafico S., Donato R., S100B engages RAGE or bFGF/FGFR1 in myoblasts depending on its own concentration and myoblast density. Implications for muscle regeneration, PLoS One, 2012, 7, e28700

    Article  PubMed  CAS  Google Scholar 

  51. Kohshi K., Katoh T., Abe H., Okudera T., Neurological accidents caused by repetitive breath-hold dives: two case reports, J. Neurol. Sci., 2000, 178, 66–69

    Article  PubMed  CAS  Google Scholar 

  52. Potkin R., Uszler J.M., Brain function imaging in asymptomatic elite breath-hold divers, In: Lindholm P., Pollock N.W., Lundgren C.E., eds., Breath-hold diving. Proceedings of the Undersea and Hyperbaric Medical Society/Divers Alert Network, June 20–21 Workshop, NC: Divers Alert Network, Durham, 2006, 135–137

    Google Scholar 

  53. Lin Y.C., Breath-hold diving in terrestrial mammals, Exerc. Sport Sci. Rev., 1982, 10, 270–307

    Article  PubMed  CAS  Google Scholar 

  54. Dejours P., Hazards of hypoxia during diving, In: Rahn H., ed., Physiology of breath-hold diving and the Ama of Japan papers, National Academy of Sciences — National Research Council, Washington, 1965, 183–193

    Google Scholar 

  55. Cross T.J., Breskovic T., Sabapathy S., Zubin M.P., Johnson B.D., Dujic Z., Respiratory muscle pressure development during breath holding in apnea divers, Med. Sci. Sports Exerc., 2013, 45, 93–101

    Article  PubMed  Google Scholar 

  56. Breskovic T., Lojpur M., Maslov P.Z., Cross T.J., Kraljevic J., Ljubkovic M., et al., The influence of varying inspired fractions of O(2) and CO(2) on the development of involuntary breathing movements during maximal apnoea, Respir. Physiol. Neurobiol., 2012, 181, 228–233

    Article  PubMed  Google Scholar 

  57. Cross T.J., Kavanagh J.J., Breskovic T., Zubin M.P., Lojpur M., Johnson B.D., et al., The effects of involuntary respiratory contractions on cerebral blood flow during maximal apnoea in trained divers, PLoS One, 2013, 8, e66950

    Article  PubMed  CAS  Google Scholar 

  58. Dzamonja G., Tank J., Heusser K., Palada I., Valic Z., Bakovic D., et al., Glossopharyngeal insufflation induces cardioinhibitory syncope in apnea divers, Clin. Auton. Res., 2010, 20, 381–384

    Article  PubMed  Google Scholar 

  59. Hurford W.E., Hochachka P.W., Schneider R.C., Guyton G.P., Stanek K.S., Zapol D.G., et al., Splenic contraction, catecholamine release, and blood volume redistribution during diving in the Weddell seal, J. Appl. Physiol., 1996, 80, 298–306

    PubMed  CAS  Google Scholar 

  60. Laub M., Hvid-Jacobsen K., Hovind P., Kanstrup I.L., Christensen N.J., Nielsen S.L., Spleen emptying and venous hematocrit in humans during exercise, J. Appl. Physiol., 1993, 74, 1024–1026

    PubMed  CAS  Google Scholar 

  61. Bakovic D., Eterovic D., Saratlija-Novakovic Z., Palada I., Valic Z., Bilopavlovic N., et al., Effect of human splenic contraction on variation in circulating blood cell counts, Clin. Exp. Pharmacol. Physiol., 2005, 32, 944–951

    Article  PubMed  CAS  Google Scholar 

  62. Aster R.H., Pooling of platelets in the spleen: role in the pathogenesis of “hypersplenic” thrombocytopenia, J. Clin. Invest., 1966, 45, 645–657

    Article  PubMed  CAS  Google Scholar 

  63. Branehog I., Weinfeld A., Roos B., The exchangeable splenic platelet pool studied with epinephrine infusion in idiopathic thrombocytopenic purpura and in patients with splenomegaly, Br. J. Haematol., 1973, 25, 239–248

    Article  PubMed  CAS  Google Scholar 

  64. Schmidt K.G., Rasmussen J.W., Are young platelets released in excess from the spleen in response to short-term physical exercise?, Scand. J. Haematol., 1984, 32, 207–214

    Article  PubMed  CAS  Google Scholar 

  65. Chamberlain K.G., Tong M., Penington D.G., Properties of the exchangeable splenic platelets released into the circulation during exercise-induced thrombocytosis, Am. J. Hematol., 1990, 34, 161–168

    Article  PubMed  CAS  Google Scholar 

  66. van der Loo B., Martin J.F., A role for changes in platelet production in the cause of acute coronary syndromes, Arterioscler. Thromb. Vasc. Biol., 1999, 19, 672–679

    Article  PubMed  Google Scholar 

  67. Ojiri Y., Noguchi K., Shiroma N., Matsuzaki T., Sakanashi M., Sakanashi M., Uneven changes in circulating blood cell counts with adrenergic stimulation to the canine spleen, Clin. Exp. Pharmacol. Physiol., 2002, 29, 53–59

    Article  PubMed  CAS  Google Scholar 

  68. Kjeldsen S.E., Weder A.B., Egan B., Neubig R., Zweifler A.J., Julius S., Effect of circulating epinephrine on platelet function and hematocrit, Hypertension, 1995, 25, 1096–1105

    Article  PubMed  CAS  Google Scholar 

  69. Sloand J.A., Hooper M., Izzo J.L. Jr., Effects of circulating norepinephrine on platelet, leukocyte and red blood cell counts by alpha 1-adrenergic stimulation, Am. J. Cardiol., 1989, 63, 1140–1142

    Article  PubMed  CAS  Google Scholar 

  70. Wadenvik H., Kutti J., The effect of an adrenaline infusion on the splenic blood flow and intrasplenic platelet kinetics, Br. J. Haematol., 1987, 67, 187–192

    Article  PubMed  CAS  Google Scholar 

  71. Bakovic D., Eterovic D., Palada I., Valic Z., Dujic Z., Does breath-holding increase the risk of a thrombotic event?, Platelets, 2008, 19, 314–315

    Article  PubMed  CAS  Google Scholar 

  72. Butterworth R.J., Bath P.M., The relationship between mean platelet volume, stroke subtype and clinical outcome, Platelets, 1998, 9, 359–364

    Article  PubMed  CAS  Google Scholar 

  73. Khandekar M.M., Khurana A.S., Deshmukh S.D., Kakrani A.L., Katdare A.D., Inamdar A.K., Platelet volume indices in patients with coronary artery disease and acute myocardial infarction: an Indian scenario, J. Clin. Pathol., 2006, 59, 146–149

    Article  PubMed  CAS  Google Scholar 

  74. Greisenegger S., Endler G., Hsieh K., Tentschert S., Mannhalter C., Lalouschek W., Is elevated mean platelet volume associated with a worse outcome in patients with acute ischemic cerebrovascular events?, Stroke, 2004, 35, 1688–1691

    Article  PubMed  CAS  Google Scholar 

  75. Bakovic D., Pivac N., Eterovic D., Breskovic T., Zubin P., Obad A., et al., The effects of low-dose epinephrine infusion on spleen size, central and hepatic circulation and circulating platelets, Clin. Physiol. Funct. Imaging, 2013, 33, 30–37

    CAS  Google Scholar 

  76. Varol E., Ozturk O., Gonca T., Has M., Ozaydin M., Erdogan D., et al., Mean platelet volume is increased in patients with severe obstructive sleep apnea, Scand. J. Clin. Lab. Invest., 2010, 70, 497–502

    Article  PubMed  Google Scholar 

  77. Parish J.M., Somers V.K., Obstructive sleep apnea and cardiovascular disease, Mayo Clin. Proc., 2004, 79, 1036–1046

    Article  PubMed  Google Scholar 

  78. Kohli P., Balachandran J.S., Malhotra A., Obstructive sleep apnea and the risk for cardiovascular disease, Curr. Atheroscler. Rep., 2011, 13, 138–146

    Article  PubMed  Google Scholar 

  79. Waradekar N.V., Sinoway L.I., Zwillich C.W., Leuenberger U.A., Influence of treatment on muscle sympathetic nerve activity in sleep apnea, Am. J. Respir. Crit. Care Med., 1996, 153, 1333–1338

    Article  PubMed  CAS  Google Scholar 

  80. Sahota P., Vahidy F., Nguyen C., Bui T.T., Yang B., Parsha K., et al., Changes in spleen size in patients with acute ischemic stroke: a pilot observational study, Int. J. Stroke, 2013, 8, 60–67

    PubMed  Google Scholar 

  81. Dujic Z., Breskovic T., Ljubkovic M., Breath hold diving: in vivo model of the brain survival response in man?, Med. Hypotheses, 2011, 76, 737–740

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeljko Dujic.

About this article

Cite this article

Dujic, Z., Breskovic, T. & Bakovic, D. Breath-hold diving as a brain survival response. Translat.Neurosci. 4, 302–313 (2013). https://doi.org/10.2478/s13380-013-0130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-013-0130-5

Keywords

Navigation