Translational Neuroscience

, Volume 4, Issue 3, pp 357–362 | Cite as

microRNA s (9, 138, 181A, 221, and 222) and mesial temporal lobe epilepsy in developing brains

Communication
  • 81 Downloads

Abstract

Background: Recently, microRNAs (miRNAs) have attracted much attention as novel players in the pathogenesis of mesial temporal lobe epilepsy (MTLE) in mature and developing brains. This study aimed to investigate the expression dynamics of miR-9, miR-138, miR-181a, miR-221, and miR-222 in the hippocampus of an immature rat model during the three stages of MTLE development and in children with MTLE. Methodology: qPCR was used to measure expression levels during the three stages of MTLE development (2 h, 3, and 8 weeks after induction of lithium-pilocarpine status epilepticus, representing the acute, latent, and chronic stages, respectively. Expression levels were also measured in hippocampi obtained from children with MTLE and normal controls. Results: In the rat model, miR-9 was significantly upregulated during the acute and chronic stages relative to controls, but not during the latent stage. MiR-138, miR-221 and miR-222 were all downregulated during all three stages of MTLE development. MiR-181a was downregulated during the acute stage, upregulated during the chronic stage, and unaltered during the latent stage. In children, miR-9 and miR-181a were upregulated, while miR-138, miR-221, and miR-222 were downregulated. Conclusion: Modulation of these miRNAs may be a new strategy in designing antiepileptic and anticonvulsant therapies for the developing brain.

Keywords

Mesial temporal lobe epilepsy microRNAs Developing brains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chang B. S., Lowenstein D.H., Epilepsy, N. Engl. J. Med, 2003, 349, 1257–1266PubMedCrossRefGoogle Scholar
  2. [2]
    Ambros V., microRNAs: Tiny regulators with great potential, Cell, 2001, 107, 823–826PubMedCrossRefGoogle Scholar
  3. [3]
    Omran A., Elimam D., Yin F., MicroRNAs: new insights into chronic childhood diseases, Biomed. Res. Int., 2013, 291826Google Scholar
  4. [4]
    Omran A., Elimam D., Shalaby S., Peng J., Yin F., MicroRNAs: a light into the “black box” of neuropediatric diseases?, Neuromolecular. Med., 2012, 14, 244–261PubMedCrossRefGoogle Scholar
  5. [5]
    Omran A., Elimam D., Webster K., Shehadeh L., Yin F., MicroRNAs: a new piece in the paediatric cardiovascular disease puzzle, Cardiol. Young, 2013, [Epub ahead of print], doi: 10.1017/ S1047951113000048Google Scholar
  6. [6]
    Lagos-Quintana M., Rauhut R., Yalcin A., Meyer J., Lendeckel W., Tuschl T., Identification of tissue-specific microRNAs from mouse, Curr. Biol, 2002, 12, 735–739PubMedCrossRefGoogle Scholar
  7. [7]
    Zhao C., Sun G., Li S., Shi Y., A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination, Nat. Struct. Mol. Biol., 2009, 16, 365–371PubMedCrossRefGoogle Scholar
  8. [8]
    Bazzoni F., Rossato M., Fabbri M., Gaudiosi D., Mirolo M., Mori L., et al., Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals, Proc. Natl. Acad. Sci. USA, 2009, 106, 5282–5287PubMedCrossRefGoogle Scholar
  9. [9]
    Morton S. U., Scherz P. J., Cordes K. R., Ivey K. N., Stainier D. Y., Srivastava D., microRNA-138 modulates cardiac patterning during embryonic development, Proc. Natl. Acad. Sci. USA, 2008, 105, 17830–17835PubMedCrossRefGoogle Scholar
  10. [10]
    Siegel G., Obernosterer G., Fiore R., Oehmen M., Bicker S., Christensen M., et al., A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis, Nat. Cell. Biol, 2009, 11, 705–716PubMedCrossRefGoogle Scholar
  11. [11]
    Wang Y., Huang J. W., Li M., Cavenee W. K., Mitchell P. S., Zhou X., et al., MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression, Mol. Cancer. Res, 2011, 9, 1100–1111PubMedCrossRefGoogle Scholar
  12. [12]
    Gong H., Song L., Lin C., Liu A., Lin X., Wu J., et al., Downregulation of miR-138 sustains NF-κB activation and promotes lipid raft formation in esophageal squamous cell carcinoma, Clin. Cancer. Res, 2013, 19, 1083–1093PubMedCrossRefGoogle Scholar
  13. [13]
    Li Q. J., Chau J., Ebert P. J., Sylvester G., Min H., Liu G., et al., miR-181a is an intrinsic modulator of T cell sensitivity and selection, Cell, 2007, 129, 147–161PubMedCrossRefGoogle Scholar
  14. [14]
    Xie W., Li Z., Li M., Xu N., Zhang Y., miR-181a and inflammation: miRNA homeostasis response to inflammatory stimuli in vivo, Biochem. Biophys. Res. Commun., 2013, 430, 647–652PubMedCrossRefGoogle Scholar
  15. [15]
    Ouyang Y. B., Lu Y., Yue S., Xu L. J., Xiong X. X., White R. E., et al., miR181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo, Neurobiol. Dis., 2012, 45, 555–563PubMedCrossRefGoogle Scholar
  16. [16]
    Bak M., Silahtaroglu A., Møller M., Christensen M., Rath M. F., Skryabin B., et al., MicroRNA expression in the adult mouse central nervous system, RNA, 2008, 14, 432–434PubMedCrossRefGoogle Scholar
  17. [17]
    Kan A. A., van Erp S., Derijck A. A., de Wit M., Hessel E. V., O’Duibhir E., et al., Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response, Cell. Mol. Life. Sci., 2012, 69, 3127–3145PubMedCrossRefGoogle Scholar
  18. [18]
    Dietrich J. B., The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier, J. Neuroimmunol., 2002, 128, 58–68PubMedCrossRefGoogle Scholar
  19. [19]
    Racine R. J., Modification of seizure activity by electrical stimulation. II. Motor seizure, Electroencephalogr. Clin. Neurophysiol., 1972, 32, 281–294CrossRefGoogle Scholar
  20. [20]
    Ashhab M. U., Omran A., Kong H., Gan N., He F., Peng J., et al., Expressions of tumor necrosis factor Alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J. Mol. Neurosci., 2013, [Epub ahead of print], doi: 10.1007/s12031-013-0013-9Google Scholar
  21. [21]
    Karafin M., St Louis E. K., Zimmerman M. B., Sparks J. D., Granner M. A., Bimodal ultradian seizure periodicity in human mesial temporal lobe epilepsy, Seizure, 2010, 19, 347–351PubMedCrossRefGoogle Scholar
  22. [22]
    Koh S., Gene expression in immature and mature hippocampus after status epilepticus, In: Schwartzkroin P. (Ed.) Encyclopedia of basic epilepsy research, Academic Press, Oxford, UK, 2009, 227–235Google Scholar
  23. [23]
    Bell G. S., Sander J. W., The epidemiology of epilepsy: the size of the problem, Seizure, 2001, 10, 306–314PubMedCrossRefGoogle Scholar
  24. [24]
    Pitkänen A., Lukasiuk K., Molecular and cellular basis of epileptogenesis in symptomatic epilepsy, Epilepsy. Behav., 2009, 14, 16–25PubMedCrossRefGoogle Scholar
  25. [25]
    Pitkänen A., Sutula T. P., Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy, Lancet. Neurol., 2001, 1, 173–181CrossRefGoogle Scholar
  26. [26]
    McKiernan R. C., Jimenez-Mateos E. M., Bray I., Engel T., Brennan G. P., Sano T., et al., Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis, PLoS One, 2012, 7, e35921PubMedCrossRefGoogle Scholar
  27. [27]
    McKiernan R. C., Jimenez-Mateos E. M., Sano T., Bray I., Stallings R. L., Simon R. P., et al., Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death, Exp. Neurol., 2012, 237, 346–354PubMedCrossRefGoogle Scholar
  28. [28]
    Hu K., Xie Y. Y., Zhang C., Ouyang D. S., Long H. Y., Sun D. N., et al., MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus, BMC. Neurosci., 2012, 13:115Google Scholar
  29. [29]
    Omran A., Peng J., Zhang C., Xiang Q. L., Xue J., Gan N., et al., Interleukin-1β and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy, Epilepsia, 2012, 53, 1215–1224PubMedCrossRefGoogle Scholar
  30. [30]
    Peng J., Omran A., Ashhab M. U., Kong H., Gan N., He F., et al., Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy, J. Mol. Neurosci., 2013, 50, 291–297PubMedCrossRefGoogle Scholar
  31. [31]
    Jimenez-Mateos E. M., Engel T., Merino-Serrais P., McKiernan R. C., Tanaka K., Mouri G., et al., Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects, Nat. Med., 2012, 18, 1087–1094PubMedCrossRefGoogle Scholar
  32. [32]
    Jimenez-Mateos E. M., Bray I., Sanz-Rodriguez A., Engel T., McKiernan R. C., Mouri G., et al., miRNA Expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132, Am. J. Pathol., 2011, 179, 2519–2532PubMedCrossRefGoogle Scholar
  33. [33]
    Song Y. J., Tian X. B., Zhang S., Zhang Y. X., Li X., Li D., et al., Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b, Brain. Res., 2011, 1387, 134–140PubMedCrossRefGoogle Scholar
  34. [34]
    Lubin F. D., Ren Y., Xu X., Anderson A. E., Nuclear factor-kappa B regulates seizure threshold and gene transcription following convulsant stimulation, J. Neurochem., 2007, 103, 1381–1395PubMedCrossRefGoogle Scholar
  35. [35]
    Risbud R. M., Porter B. E., Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus, PLoS One, 2013, 8, e53464PubMedCrossRefGoogle Scholar
  36. [36]
    Neilson J. R., Zheng G. X., Burge C. B., Sharp P. A., Dynamic regulation of miRNA expression in ordered stages of cellular development, Genes. Dev., 2007, 21, 578–589PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  1. 1.Department of PediatricsXiangya Hospital of Central South UniversityChangsha, HunanChina
  2. 2.Department of Pediatrics and NeonatologySuez Canal UniversityIsmailiaEgypt

Personalised recommendations