Translational Neuroscience

, Volume 4, Issue 2, pp 241–250 | Cite as

Serotonin transporter genotype by environment: Studies on alcohol use and misuse in non-human and human primates

  • Aniruddha Todkar
  • Kent W. Nilsson
  • Lars Oreland
  • Sheilagh Hodgins
  • Erika Comasco
Review Article


Much evidence indicates that gene-by-environment interactions (GxE) play a role in alcohol misuse. It has been proposed that interactions between serotonin and stress confer vulnerability for alcohol misuse. The present review examined studies of the interaction between the serotonin transporter linked polymorphic region (5-HTTLPR) genotype and stressful life events and alcohol-related phenotypes, in rhesus monkeys and humans. Ten studies were found that had investigated the interaction of 5-HTTLPR and various measures of stress and alcohol use or misuse, two studies of rhesus monkeys, and eight of humans. The results are contradictory. Important differences were reported in study samples, experimental designs, measures used to assess environmental variables, definitions and measurements of alcohol-related phenotypes, and in the statistical analyses. These differences may explain the contradictory results. Guidelines for future studies are suggested. Results are discussed in light of findings from molecular, non-human animal, and clinical studies. The review highlights the need for future studies examining associations of interactions between the serotonin transporter gene and environmental factors and alcohol misuse, especially in samples followed over time.


Alcohol Alcohol use disorder Association Environment Gene Genotype Interaction Primates Serotonin transporter 5-HTTLPR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cases O., Vitalis T., Seif I., De Maeyer E., Sotelo C., Gaspar P., Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period, Neuron, 1996, 16, 297–307PubMedCrossRefGoogle Scholar
  2. [2]
    Gaspar P., Cases O., Maroteaux L., The developmental role of serotonin: news from mouse molecular genetics, Nat. Rev. Neurosci., 2003, 4, 1002–1012PubMedCrossRefGoogle Scholar
  3. [3]
    Nordquist N., Oreland L., Serotonin, genetic variability, behaviour, and psychiatric disorders — a review, Ups. J. Med. Sci., 2010, 115, 2–10PubMedCrossRefGoogle Scholar
  4. [4]
    Amara S.G., Kuhar M.J., Neurotransmitter transporters: recent progress, Ann. Rev. Neurosci., 1993, 16, 73–93PubMedCrossRefGoogle Scholar
  5. [5]
    Heils A., Teufel A., Petri S., Stober G., Riederer P., Bengel D., et al., Allelic variation of human serotonin transporter gene expression, J. Neurochem., 1996, 66, 2621–2624PubMedCrossRefGoogle Scholar
  6. [6]
    Nakamura M., Ueno S., Sano A., Tanabe H., The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants, Mol. Psychiatry, 2000, 5, 32–38PubMedCrossRefGoogle Scholar
  7. [7]
    Hu X.Z., Lipsky R.H., Zhu G., Akhtar L.A., Taubman J., Greenberg B.D., et al., Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder, Am J. Hum. Gen., 2006, 78, 815–826CrossRefGoogle Scholar
  8. [8]
    Lesch K.P., Meyer J., Glatz K., Flugge G., Hinney A., Hebebrand J., et al., The 5-HT transporter gene-linked polymorphic region (5-HTTLPR) in evolutionary perspective: alternative biallelic variation in rhesus monkeys, J. Neural Transm., 1997, 104, 1259–1266PubMedCrossRefGoogle Scholar
  9. [9]
    Bengel D., Heils A., Petri S., Seemann M., Glatz K., Andrews A., et al., Gene structure and 5’-flanking regulatory region of the murine serotonin transporter, Mol. Brain Res., 1997, 44, 286–292PubMedCrossRefGoogle Scholar
  10. [10]
    Dawes M.A., Roache J.D., Javors M.A., Bergeson S.E., Richard D.M., Mathias C.W., et al., Drinking histories in alcohol-use-disordered youth: preliminary findings on relationships to platelet serotonin transporter expression with genotypes of the serotonin transporter, J. Stud. Alcohol Drugs, 2009, 70, 899–907PubMedGoogle Scholar
  11. [11]
    Buchmann A.F., Schmid B., Blomeyer D., Becker K., Treutlein J., Zimmermann U.S., et al., Impact of age at first drink on vulnerability to alcohol-related problems: testing the marker hypothesis in a prospective study of young adults, J. Psychiatr. Res., 2009, 43, 1205–1212PubMedCrossRefGoogle Scholar
  12. [12]
    Pinto E., Reggers J., Gorwood P., Boni C., Scantamburlo G., Pitchot W., et al., The short allele of the serotonin transporter promoter polymorphism influences relapse in alcohol dependence, Alcohol Alcohol., 2008, 43, 398–400PubMedCrossRefGoogle Scholar
  13. [13]
    Gokturk C., Schultze S., Nilsson K.W., von Knorring L., Oreland L., Hallman J., Serotonin transporter (5-HTTLPR) and monoamine oxidase (MAOA) promoter polymorphisms in women with severe alcoholism, Arch. Womens Ment. Health, 2008, 11, 347–355PubMedCrossRefGoogle Scholar
  14. [14]
    van der Zwaluw C.S., Engels R.C., Vermulst A.A., Rose R.J., Verkes R.J., Buitelaar J., et al., A serotonin transporter polymorphism (5-HTTLPR) predicts the development of adolescent alcohol use, Drug Alcohol Depend., 2010, 112, 134–139PubMedCrossRefGoogle Scholar
  15. [15]
    Hammoumi S., Payen A., Favre J.D., Balmes J.L., Benard J.Y., Husson M., et al., Does the short variant of the serotonin transporter linked polymorphic region constitute a marker of alcohol dependence?, Alcohol, 1999, 17, 107–112PubMedCrossRefGoogle Scholar
  16. [16]
    Rasmussen H., Bagger Y., Tanko L.B., Christiansen C., Werge T., Lack of association of the serotonin transporter gene promoter region polymorphism, 5-HTTLPR, including rs25531 with cigarette smoking and alcohol consumption, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2009, 150B, 575–580PubMedCrossRefGoogle Scholar
  17. [17]
    Shin S., Stewart R., Ferri C.P., Kim J.M., Shin I.S., Kim S.W., et al., An investigation of associations between alcohol use disorder and polymorphisms on ALDH2, BDNF, 5-HTTLPR, and MTHFR genes in older Korean men, Int. J. Geriatr. Psychiatry, 2010, 25, 441–448PubMedCrossRefGoogle Scholar
  18. [18]
    McHugh R.K., Hofmann S.G., Asnaani A., Sawyer A.T., Otto M.W., The serotonin transporter gene and risk for alcohol dependence: a metaanalytic review, Drug Alcohol Depend., 2010, 108, 1–6PubMedCrossRefGoogle Scholar
  19. [19]
    Herman A.I., Conner T.S., Anton R.F., Gelernter J., Kranzler H.R., Covault J., Variation in the gene encoding the serotonin transporter is associated with a measure of sociopathy in alcoholics, Addict. Biol., 2011, 16, 124–132PubMedCrossRefGoogle Scholar
  20. [20]
    Belsky J., Pluess M., Beyond diathesis stress: differential susceptibility to environmental influences, Psychol. Bull., 2009, 135, 885–908PubMedCrossRefGoogle Scholar
  21. [21]
    Boyce W.T., Ellis B.J., Biological sensitivity to context: I. an evolutionary-developmental theory of the origins and functions of stress reactivity, Dev. Psychopathol., 2005, 17, 271–301PubMedCrossRefGoogle Scholar
  22. [22]
    Beaver K.M., Belsky J., Gene-environment interaction and the intergenerational transmission of parenting: testing the differential-susceptibility hypothesis, Psychiatr. Q., 2012, 83, 29–40PubMedCrossRefGoogle Scholar
  23. [23]
    Caspi A., Sugden K., Moffitt T.E., Taylor A., Craig I.W., Harrington H., et al., Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene, Science, 2003, 301, 386–389PubMedCrossRefGoogle Scholar
  24. [24]
    Karg K., Burmeister M., Shedden K., Sen S., The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation, Arch. Gen. Psychiatry, 2011, 68, 444–454PubMedCrossRefGoogle Scholar
  25. [25]
    Enoch M.A., The influence of gene-environment interactions on the development of alcoholism and drug dependence, Curr. Psychiatry Rep., 2012, 14, 150–158PubMedCrossRefGoogle Scholar
  26. [26]
    Jose B.S., van Oers H.A., van de Mheen H.D., Garretsen H.F., Mackenbach J.P., Stressors and alcohol consumption, Alcohol Alcohol., 2000, 35, 307–312PubMedCrossRefGoogle Scholar
  27. [27]
    Ferguson B., Hunter J.E., Luty J., Street S.L., Woodall A., Grant K.A., Genetic load is associated with hypothalamic-pituitary-adrenal axis dysregulation in macaques, Genes Brain Behav., 2012, [Epub ahead of print], doi: 10.1111/j.1601-183X.2012.00856.xGoogle Scholar
  28. [28]
    Barr C.S., Newman T.K., Becker M.L., Champoux M., Lesch K.P., Suomi S.J., et al., Serotonin transporter gene variation is associated with alcohol sensitivity in rhesus macaques exposed to early-life stress, Alcohol. Clin. Exp. Res., 2003, 27, 812–817PubMedCrossRefGoogle Scholar
  29. [29]
    Nilsson K.W., Sjoberg R.L., Damberg M., Alm P.O., Ohrvik J., Leppert J., et al., Role of the serotonin transporter gene and family function in adolescent alcohol consumption, Alcohol. Clin. Exp. Res., 2005, 29, 564–570PubMedCrossRefGoogle Scholar
  30. [30]
    Barr C.S., Newman T.K., Lindell S., Shannon C., Champoux M., Lesch K.P., et al., Interaction between serotonin transporter gene variation and rearing condition in alcohol preference and consumption in female primates, Arch. Gen. Psychiatry, 2004, 61, 1146–1152PubMedCrossRefGoogle Scholar
  31. [31]
    Vaske J., Newsome J., Wright J.P., Interaction of serotonin transporter linked polymorphic region and childhood neglect on criminal behavior and substance use for males and females, Dev. Psychopathol., 2012, 24, 181–193PubMedCrossRefGoogle Scholar
  32. [32]
    Dick D.M., Plunkett J., Hamlin D., Nurnberger J.Jr., Kuperman S., Schuckit M., et al. Association analyses of the serotonin transporter gene with lifetime depression and alcohol dependence in the Collaborative Study on the Genetics of Alcoholism (COGA) sample, Psychiatr. Genet., 2007, 17, 35–38PubMedCrossRefGoogle Scholar
  33. [33]
    Laucht M., Treutlein J., Schmid B., Blomeyer D., Becker K., Buchmann A.F., et al., Impact of psychosocial adversity on alcohol intake in young adults: moderation by the LL genotype of the serotonin transporter polymorphism, Biol. Psychiatry, 2009, 66, 102–109PubMedCrossRefGoogle Scholar
  34. [34]
    Covault J., Tennen H., Armeli S., Conner T.S., Herman A.I., Cillessen A.H., et al., Interactive effects of the serotonin transporter 5-HTTLPR polymorphism and stressful life events on college student drinking and drug use, Biol. Psychiatry, 2007, 61, 609–616PubMedCrossRefGoogle Scholar
  35. [35]
    Olsson C.A., Byrnes G.B., Lotfi-Miri M., Collins V., Williamson R., Patton C., et al., Association between 5-HTTLPR genotypes and persisting patterns of anxiety and alcohol use: results from a 10-year longitudinal study of adolescent mental health, Mol. Psychiatry, 2005, 10, 868–876PubMedCrossRefGoogle Scholar
  36. [36]
    Kranzler H.R., Scott D., Tennen H., Feinn R., Williams C., Armeli S., et al., The 5-HTTLPR polymorphism moderates the effect of stressful life events on drinking behavior in college students of African descent, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2012, 159B, 484–490PubMedCrossRefGoogle Scholar
  37. [37]
    Kaufman J., Yang B.Z., Douglas-Palumberi H., Crouse-Artus M., Lipschitz D., Krystal J.H., et al., Genetic and environmental predictors of early alcohol use, Biol. Psychiatry, 2007, 61, 1228–1234PubMedCrossRefGoogle Scholar
  38. [38]
    Dick D.M., Wang J.C., Plunkett J., Aliev F., Hinrichs A., Bertelsen S., et al., Family-based association analyses of alcohol dependence phenotypes across DRD2 and neighboring gene ANKK1, Alcohol. Clin. Exp. Res., 2007, 31, 1645–1653PubMedCrossRefGoogle Scholar
  39. [39]
    Suomi S.J., Risk, resilience, and gene x environment interactions in rhesus monkeys, Ann. NY Acad. Sci., 2006, 1094, 52–62PubMedCrossRefGoogle Scholar
  40. [40]
    Barr C.S., Newman T.K., Becker M.L., Parker C.C., Champoux M., Lesch K.P., et al., The utility of the non-human primate; model for studying gene by environment interactions in behavioral research, Genes Brain Behav., 2003, 2, 336–340PubMedCrossRefGoogle Scholar
  41. [41]
    O’Malley P.M., Johnston L.D., Epidemiology of alcohol and other drug use among American college students, J. Stud. Alcohol Suppl., 2002, 14, 23–39PubMedGoogle Scholar
  42. [42]
    Philibert R.A., Sandhu H., Hollenbeck N., Gunter T., Adams W., Madan A., The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies, Am. J. Med. Genet. B Neuropsychiatr. Genet., 2008, 147B, 543–549PubMedCrossRefGoogle Scholar
  43. [43]
    Nilsson K.W., Comasco E., Aslund C., Nordquist N., Leppert J., Oreland L., MAOA genotype, family relations and sexual abuse in relation to adolescent alcohol consumption, Addict. Biol., 2011, 16, 347–355PubMedCrossRefGoogle Scholar
  44. [44]
    Comasco E., Nordquist N., Leppert J., Oreland L., Kronstrand R., Alling C., et al., Adolescent alcohol consumption: biomarkers PEth and FAEE in relation to interview and questionnaire data, J. Stud. Alcohol Drugs, 2009, 70, 797–804PubMedGoogle Scholar
  45. [45]
    Comasco E., Berglund K., Oreland L., Nilsson K.W., Why do adolescents drink? Motivational patterns related to alcohol consumption and alcohol-related problems, Subst. Use Misuse, 2010, 45, 1589–1604PubMedCrossRefGoogle Scholar
  46. [46]
    Wray N.R., James M.R., Gordon S.D., Dumenil T., Ryan L., Coventry W.L., et al., Accurate, large-scale genotyping of 5HTTLPR and flanking single nucleotide polymorphisms in an association study of depression, anxiety, and personality measures, Biol. Psychiatry, 2009, 66, 468–476PubMedCrossRefGoogle Scholar
  47. [47]
    Richardson D.B., Kaufman J.S., Estimation of the relative excess risk due to interaction and associated confidence bounds, Am. J. Epidemiol., 2009, 169, 756–760PubMedCrossRefGoogle Scholar
  48. [48]
    Caspi A., Moffitt T.E., Gene-environment interactions in psychiatry: joining forces with neuroscience, Nat. Rev. Neurosci., 2006, 7, 583–590PubMedCrossRefGoogle Scholar
  49. [49]
    Altamura C., Dell’Acqua M.L., Moessner R., Murphy D.L., Lesch K.P., Persico A.M., Altered neocortical cell density and layer thickness in serotonin transporter knockout mice: a quantitation study, Cereb. Cortex, 2007, 17, 1394–1401PubMedCrossRefGoogle Scholar
  50. [50]
    Persico A.M., Baldi A., Dell’Acqua M.L., Moessner R., Murphy D.L., Lesch K.P., et al., Reduced programmed cell death in brains of serotonin transporter knockout mice, Neuroreport, 2003, 14, 341–344PubMedCrossRefGoogle Scholar
  51. [51]
    Carola V., Pascucci T., Puglisi-Allegra S., Cabib S., Gross C., Effect of the interaction between the serotonin transporter gene and maternal environment on developing mouse brain, Behav. Brain Res., 2011, 217, 188–194PubMedCrossRefGoogle Scholar
  52. [52]
    Oreland S., Pickering C., Gokturk C., Oreland L., Arborelius L., Nylander I., Two repeated maternal separation procedures differentially affect brain 5-hydroxytryptamine transporter and receptors in young and adult male and female rats, Brain Res., 2009, 1305 Suppl., S37–S49CrossRefGoogle Scholar
  53. [53]
    Kelai S., Aissi F., Lesch K.P., Cohen-Salmon C., Hamon M., Lanfumey L., Alcohol intake after serotonin transporter inactivation in mice, Alcohol Alcohol., 2003, 38, 386–389PubMedCrossRefGoogle Scholar
  54. [54]
    Boyce-Rustay J.M., Wiedholz L.M., Millstein R.A., Carroll J., Murphy D.L., Daws L.C., et al., Ethanol-related behaviors in serotonin transporter knockout mice, Alcohol. Clin. Exp. Res., 2006, 30, 1957–1965PubMedCrossRefGoogle Scholar
  55. [55]
    Fahlke C., Berggren U., Berglund K.J., Zetterberg H., Blennow K., Engel J.A., et al., Neuroendocrine assessment of serotonergic, dopaminergic, and noradrenergic functions in alcohol-dependent individuals, Alcohol. Clin. Exp. Res., 2012, 36, 97–103PubMedCrossRefGoogle Scholar
  56. [56]
    Berggren U., Eriksson M., Fahlke C., Balldin J., Is long-term heavy alcohol consumption toxic for brain serotonergic neurons? Relationship between years of excessive alcohol consumption and serotonergic neurotransmission, Drug Alcohol Depend., 2002, 65, 159–165PubMedCrossRefGoogle Scholar
  57. [57]
    Heinz A., Ragan P., Jones D.W., Hommer D., Williams W., Knable M.B., et al., Reduced central serotonin transporters in alcoholism, Am. J. Psychiatry, 1998, 155, 1544–1549PubMedGoogle Scholar
  58. [58]
    Murphy J.M., McBride W.J., Lumeng L., Li T.K., Regional brain levels of monoamines in alcohol-preferring and -nonpreferring lines of rats, Pharmacol. Biochem. Behav., 1982, 16, 145–149PubMedCrossRefGoogle Scholar
  59. [59]
    Berglund K.J., Balldin J., Berggren U., Gerdner A., Fahlke C., Childhood maltreatment affects the serotonergic system in male alcoholdependent individuals, Alcohol. Clin. Exp. Res., 2013, 37, 757–762PubMedCrossRefGoogle Scholar
  60. [60]
    Jonsson E.G., Nothen M.M., Gustavsson J.P., Neidt H., Bunzel R., Propping P., et al., Polymorphisms in the dopamine, serotonin, and norepinephrine transporter genes and their relationships to monoamine metabolite concentrations in CSF of healthy volunteers, Psychiatry Res., 1998, 79, 1–9PubMedCrossRefGoogle Scholar
  61. [61]
    Nielsen D.A., Mazzanti C.M., Linnoila M., Goldman D., Serotonin transporter and seasonal variation in serotonin function, Neuropsychopharmacology, 1999, 20, 507–508CrossRefGoogle Scholar
  62. [62]
    Bennett A.J., Lesch K.P., Heils A., Long J.C., Lorenz J.G., Shoaf S.E., et al., Early experience and serotonin transporter gene variation interact to influence primate CNS function, Mol. Psychiatry, 2002, 7, 118–122PubMedCrossRefGoogle Scholar
  63. [63]
    Bah J., Lindstrom M., Westberg L., Manneras L., Ryding E., Henningsson S., et al., Serotonin transporter gene polymorphisms: effect on serotonin transporter availability in the brain of suicide attempters, Psychiatry Res., 2008, 162, 221–229PubMedCrossRefGoogle Scholar
  64. [64]
    Cirulli E.T., Goldstein D.B., In vitro assays fail to predict in vivo effects of regulatory polymorphisms, Hum. Mol. Genet., 2007, 16, 1931–1939PubMedCrossRefGoogle Scholar
  65. [65]
    Balciuniene J., Emilsson L., Oreland L., Pettersson U., Jazin E., Investigation of the functional effect of monoamine oxidase polymorphisms in human brain, Hum. Genet., 2002, 110, 1–7PubMedCrossRefGoogle Scholar
  66. [66]
    Cases O., Seif I., Grimsby J., Gaspar P., Chen K., Pournin S., et al., Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA, Science, 1995, 268, 1763–1766PubMedCrossRefGoogle Scholar
  67. [67]
    Szyf M., How do environments talk to genes?, Nat. Neurosci., 2013, 16, 2–4PubMedCrossRefGoogle Scholar
  68. [68]
    Weaver I.C., Champagne F.A., Brown S.E., Dymov S., Sharma S., Meaney M.J., et al., Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life, J. Neurosci., 2005, 25, 11045–11054PubMedCrossRefGoogle Scholar
  69. [69]
    Kim J.S., Shukla S.D., Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissues, Alcohol Alcohol., 2006, 41, 126–132PubMedCrossRefGoogle Scholar
  70. [70]
    Park B.Y., Lee B.C., Jung K.H., Jung M.H., Park B.L., Chai Y.G., et al., Epigenetic changes of serotonin transporter in the patients with alcohol dependence: methylation of an serotonin transporter promoter CpG island, Psychiatry Investig., 2011, 8, 130–133PubMedCrossRefGoogle Scholar
  71. [71]
    Kinnally E.L., Capitanio J.P., Leibel R., Deng L., LeDuc C., Haghighi F., et al., Epigenetic regulation of serotonin transporter expression and behavior in infant rhesus macaques, Genes Brain Behav., 2010, 9, 575–582PubMedGoogle Scholar
  72. [72]
    Lindell S.G., Yuan Q., Zhou Z., Goldman D., Thompson R.C., Lopez J.F., et al., The serotonin transporter gene is a substrate for age and stress dependent epigenetic regulation in rhesus macaque brain: potential roles in genetic selection and gene x environment interactions, Dev. Psychopathol., 2012, 24, 1391–400PubMedCrossRefGoogle Scholar
  73. [73]
    Duncan L.E., Keller M.C., A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry, Am. J. Psychiatry, 2011, 168, 1041–1049PubMedCrossRefGoogle Scholar
  74. [74]
    Dunn E.C., Uddin M., Subramanian S.V., Smoller J.W., Galea S., Koenen K.C., Research review: gene-environment interaction research in youth depression — a systematic review with recommendations for future research, J. Child Psychol. Psychiatry, 2011, 52, 1223–1238PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • Aniruddha Todkar
    • 1
  • Kent W. Nilsson
    • 2
  • Lars Oreland
    • 1
  • Sheilagh Hodgins
    • 3
  • Erika Comasco
    • 1
  1. 1.Department of NeuroscienceUppsala UniversityUppsalaSweden
  2. 2.Centre for clinical researchVästerås Central HospitalVästeråsSweden
  3. 3.Département de Psychiatrie, Université de Montréal, MontréalCanada, and Institute of Psychiatry, King’s College LondonLondonUK

Personalised recommendations