Abstract
An extremely large number of genes have been associated with autism. The functions of these genes span numerous domains and prove challenging in the search for commonalities underlying the conditions. In this study, we instead looked at characteristics of the genes themselves, specifically in the nature of their transposable element content. Utilizing available sequence databases, we compared occurrence of transposons in autismrisk genes to randomized controls and found that transposable content was significantly greater in our autism group. These results suggest a relationship between transposable element content and autism-risk genes and have implications for the stability of those genomic regions.
This is a preview of subscription content, access via your institution.
References
Kazazian H.H.Jr., Mobile DNA: Finding treasure in junk, FT Press Science, New Jersey, 2011
Tassabehji M., Strachan T., Anderson M., Campbell R.D., Collier S., Lako M., Identification of a novel family of human endogenous retroviruses and characterization of one family member, HERV-k(C4), located in the complement C4 gene cluster, Nucleic Acids Res., 1991, 22, 5211–5217
Xu L.M., Li J.R., Huang Y., Zhao M., Tang X., Wei L., AutismKB: an evidence-based knowledgebase of autism genetics, Nucleic Acids Res., 2012, 40, D1016–D1022
Pinto D., Pagnamenta A.T., Keli L., Anney R., Merico D., Regan R., et al., Functional impact of global rare copy number variation in autism spectrum disorder, Nature, 2010, 466, 368–372
Shlien A., Tabori U., Marshall C.R., Pienkowska M., Feuk L., Novokmet A., et al., Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome, Proc. Natl. Acad. Sci. USA, 2008, 105, 11264–11269
Verkerk A.J., Pieretti M., Sutcliffe J.S., Fu Y.H., Kuhl D.P., Pizzuti A., et al., Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome, Cell, 1991, 65, 905–914
Liu Y., Hock J. M., Van Beneden R. J., Li X., Aberrant overexpression of FOXM1 transcription factor plays a critical role in lung carcinogenesis induced by low doses of arsenic, Mol. Carcinogen., 2012, Epub ahead of print, doi: 10.1002/mc.21989
Schmidt J. M., Good R.T., Appleton B., Sherrard H., Raymant G.C., Bogwitz M.R., et al., Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus, PLoS Genet., 2010, 6, e1000998
McGinnis W., Shermoen A.W., Beckendorf S.K., A transposable element inserted just 5’ to a Drosophila glue protein gene alters gene expression and chromatin structure, Cell, 1983, 34, 75–84
Hoffman-Liebermann B., Liebermann D., Troutt A., Kedes L.H., Cohen S.N., Human homologs of TU transposon sequences: polypurine/polypyrimidine sequence elements that can alter DNA conformation in vitro and in vivo, Mol. Cell. Biol., 1986, 6, 3622–3642
Hedges D.J., Deininger P.L., Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity, Mutat. Res., 2007, 616, 46–59
Thomas-Chollier M., Sand O., Turatsinze J.V., Janky R., Defrance M., Vervisch E., et al., RSAT: regulatory sequence analysis tools, Nucleic Acids Res., 2008, 36, W119–W127
Flicek P., Amode M.R., Barrell D., Beal K., Brent S., Carvalho-Silva D., et al., Ensembl 2012., Nucleic Acids Res., 2012, 40, D84–D90
Levy A., Sela N., Ast G., TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates, Nucleic Acids Res., 2008, 36, D47-D52
International Schizophrenia Consortium, Rare chromosomal deletions and duplications increase risk of schizophrenia, Nature, 2008, 455, 237–241
Shlien A., Malkin D., Copy number variations and cancer, Genome Med., 2009, 1, 62
Cross-Disorder Group of the Psychiatric Genomics Consortium, Smoller J.W., Craddock N., Kendler K., Lee P.H., Naele B.M., et al., Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis, Lancet, 2013, 381, 1372-1379
Girirajan S., Dennis M.Y., Baker C., Malig M., Coe B.P., Campbell C.D., et al., Refinement and discovery of new hotspots of copy-number variation associated with autism spectrum disorder, Am. J. Hum. Genet., 2013, 92, 221–237
Millan M. J., An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy, Neuropharmacology, 2012, 68, 2–82
Shulha H.P., Cheung I., Whittle C., Wang J., Virgil D., Lin C.L., et al., Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons, Arch. Gen. Psychiat., 2012, 69, 314–324
Yuan J., Pu M., Zhang Z., Lou Z., Histone H3-K56 acetylation is important for genomic stability in mammals, Cell Cycle, 2009, 8, 1747–1753
Slotkin R. K., Martienssen R., Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet., 2007, 8, 272–285
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Williams, E.L., Casanova, M.F., Switala, A.E. et al. Transposable elements occur more frequently in autism-risk genes: Implications for the role of genomic instability in autism. Translat.Neurosci. 4, 172–202 (2013). https://doi.org/10.2478/s13380-013-0113-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s13380-013-0113-6
Keywords
- Autism-risk genes
- Autism spectrum disorders
- Genomic instability
- Transposons