Skip to main content
Log in

Schizophrenia as a disturbance of cortical sensory maps

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Schizophrenia is a disorder characterized by a variety of symptoms, which among others include hallucinations, delusions and passivity experiences. It has been found that individuals with schizophrenia misattribute their own thoughts and actions to an outside agency (source monitoring deficits), which could account for psychotic experiences such as that of hearing voices. In order to explain the source-monitoring deficits as well as psychosis, it has been proposed that mechanisms that enable anticipation and recognition of sensory consequences of one’s own actions are impaired in schizophrenia. Importantly, such mechanisms may require accurate cortical sensory representations such as in the primary somatosensory cortex (S1). The establishment and maintenance of cortical sensory representations has been found to utilize a sleep-related brain rhythm known as spindling. Namely, in the perinatal period in humans and animals, and possibly also thereafter, spontaneous activity in the sensory periphery drives spindle activity in the developing cortical sensory areas, which then contributes to the formation of sensory representations that match bodily features. For example, muscle twitch-spindle sequences during sleep facilitate the formation and maintenance of S1 in accordance with the layout of musculature. This process has been proposed to continue throughout the lifespan and may be particularly important during periods of bodily changes (adolescence, menopause). In schizophrenia, the amount of sleep spindle activity is markedly reduced, which would be expected to result in insufficient cortical sensory representations and have relevance for the relative inability of individuals with schizophrenia to accurately recognize self-initiated actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Psychiatric Association, Diagnostic and statistical manual of mental disorders, 4th ed. text revision, American Psychiatric Association, 2000

  2. Arad M., Weiner I., Disruption of latent inhibition induced by ovariectomy can be reversed by estradiol and clozapine as well as by co-administration of haloperidol with estradiol but not by haloperidol alone, Psychopharmacology, 2009, 206, 731–740

    Article  PubMed  CAS  Google Scholar 

  3. Oades R. D., Schepker R., Serum gonadal steroid hormones in young schizophrenic patients, Psychoneuroendocrinology, 1994, 19, 373–385

    Article  PubMed  CAS  Google Scholar 

  4. Cohen R. Z., Seeman M. V., Gotowiec A., Kopala L., Earlier puberty as a predictor of later onset of schizophrenia in women, Am. J. Psychiatry, 1999, 156, 1059–1064

    PubMed  CAS  Google Scholar 

  5. Cohen B. M., Yurgelun-Todd D., Alterations of thalamic activity in schizophrenia and in response to antipsychotic drugs, Neuropsychopharmacology, 2001, 25, 305–312

    Article  PubMed  CAS  Google Scholar 

  6. Feinberg I., Corollary discharge, hallucinations and dreaming, Schizophr. Bull., 2011, 37, 1–3

    Article  PubMed  Google Scholar 

  7. Guller Y., Ferrarelli F., Shackman A.J., Sarasso S., Peterson M. J., Langheim F. J., et al., Probing thalamic integrity in schizophrenia using concurrent transcranial magnetic stimulation and functional magnetic resonance imaging, Arch. Gen. Psychiatry, 69, 662–671

  8. Vukadinovic Z., Sleep abnormalities in schizophrenia may suggest impaired trans-thalamic cortico-cortical communication: towards a dynamic model of the illness, Eur. J. Neurosci., 2011, 34, 1031–1039

    Article  PubMed  Google Scholar 

  9. Vukadinovic Z., Rosenzweig I., Abnormalities in thalamic neurophysiology in schizophrenia: could psychosis be a result of potassium channel dysfunction?, Neurosci. Biobehav. Rev., 2012, 36, 960–968

    Article  PubMed  CAS  Google Scholar 

  10. Vukadinovic Z., Similarities between cortical “up” states during slow wave sleep and wakefulness: the implications for schizophrenia, Transl. Neurosci., 2012, 3, 51–55

    Article  Google Scholar 

  11. Steriade M., Grouping of brain rhythms in corticothalamic systems, Neuroscience, 2006, 137, 1087–1106

    Article  PubMed  CAS  Google Scholar 

  12. Sherman S. M., Guillery R. W., Exploring the thalamus and its role in cortical function, 2nd ed., MIT Press, Cambridge, MA, 2006

    Google Scholar 

  13. Sherman S. M., Guillery R. W., Distinct functions for direct and transthalamic corticocortical connections, J. Neurophysiol., 2011, 106, 1068–1077

    Article  PubMed  Google Scholar 

  14. Yang J. W., An S., Sun J. J., Reyes-Puerta V., Kindler J., Berger T., et al., Thalamic network oscillations synchronize ontogenic columns in the newborn rat barrel cortex, Cereb. Cortex, in press, doi: 10.1093/cercor/bhs103

  15. Khazipov R., Sirota A., Leinekugel X., Holmes G. L., Ben-Ari Y., Buzsáki G., Early motor activity drives spindle bursts in the developing somatosensory cortex, Nature, 2004, 432, 758–761

    Article  PubMed  CAS  Google Scholar 

  16. Milh M., Kaminska A., Huon C., Lapillonne A., Ben-Ari Y., Khazipov R., Rapid cortical oscillations and early motor activity in premature human neonate, Cereb. Cortex, 2007, 17, 1582–1594

    Article  PubMed  Google Scholar 

  17. Huffaker S. J., Chan J., Nicodemus K. K., Sambataro F., Yang F., Mattay V., et al., Primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia, Nat. Med., 2009, 15, 509–518

    Article  PubMed  CAS  Google Scholar 

  18. Arseneault L., Cannon M., Witton J., Murray R. M., Causal association between cannabis and psychosis: examination of the evidence, Br. J. Psychiatry, 2004, 184, 110–117

    Article  PubMed  Google Scholar 

  19. Semple D. M., McIntosh A. M., Lawrie S. M., Cannabis as a risk factor for psychosis: systematic review, J. Psychopharmacol., 2005, 19, 187–194

    Article  PubMed  Google Scholar 

  20. Byne W., Hazlett E. A., Buchsbaum M. S., Kemether E., The thalamus and schizophrenia: current status of research. Acta Neuropathol., 2009, 117, 347–368

    Article  PubMed  Google Scholar 

  21. Fuster J. M., The prefrontal cortex, 4th ed., Elsevier, 2008

  22. Guillery R. W., Sherman S. M., Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res. Rev., 2011, 66, 205–219

    Article  PubMed  CAS  Google Scholar 

  23. Buzsáki G., Rhythms of the brain, Oxford University Press, New York, 2006

    Book  Google Scholar 

  24. Frith C. D., Blackemore S. J., Wolpert D. M., Explaining the symptoms of schizophrenia: abnormalities in the awareness of action, Brain Res. Rev., 2000, 31, 357–363

    Article  PubMed  CAS  Google Scholar 

  25. Schneider K., Klinische Psychopathologie, Georg Thieme Verlag, 1950

  26. Kumari V., Fannon D., Ffytuche D. H., Raveenrdran V., Antonova E., Premkumar P., et al., Functional MRI of verbal self-monitoring in schizophrenia: performance and illness-specific effects, Schizophr. Bull., 2010, 36, 740–755

    Article  PubMed  Google Scholar 

  27. Anselmetti S., Cavallaro R., Bechi M., Angelone S. M., Ermoli E., Cocchi F., et al., Psychopathological and neuropsychological correlates of source monitoring impairment in schizophrenia, Psychiatry Res., 2007, 150, 51–59

    Article  PubMed  Google Scholar 

  28. Brebion G., Amador X., David A., Malaspina D., Sharif Z., Gorman J. M., Positive symptomatology and source-monitoring failure in schizophrenia-an analysis of symptom-specific effects, Psychiatry Res., 2000, 95, 119–131

    Article  PubMed  CAS  Google Scholar 

  29. Ford J. M., Mathalon D. H., Whitfield S., Faustman W. O., Roth W. T., Reduced communication between frontal and temporal lobes during talking in schizophrenia, Biol. Psychiatry, 2002, 52, 485–492

    Article  Google Scholar 

  30. Ford J. M., Gray M., Faustman W. O., Roach B. J., Mathalon D. H., Dissecting corollary discharge dysfunction in schizophrenia, Psychophysiology, 2007, 44, 522–529

    Article  PubMed  Google Scholar 

  31. Franck N., Farrer C., Georgieff N., Marie-Cardine M., Dalery J., d’Amato T., et al., Defective recognition of one’s own actions in schizophrenic patients, Am. J. Psych., 2001, 158, 454–459

    Article  CAS  Google Scholar 

  32. Johns L. C., Rossell S., Frith C., Agmad F., Hemsley D., Kuipers E., et al., Verbal self-monitoring and auditory verbal hallucinations in patients with schizophrenia, Psychol. Med., 2001, 31, 705–715

    Article  PubMed  CAS  Google Scholar 

  33. Keefe R. S., Arnold M. C., Bayen U. K., Harvey P. D., Source-monitoring deficits in patients with schizophrenia: a multinomial modeling analysis, Psychol. Med., 1999, 29, 903–914

    Article  PubMed  CAS  Google Scholar 

  34. Keefe R. S., Arnold M. C., Bayen U. K., McEvoy J. P., Wilson W. H., Source monitoring deficits for self-generated stimuli in schizophrenia: multinomial modeling of data from three sources, Schizophr. Res., 2002, 57, 51–67

    Article  PubMed  Google Scholar 

  35. Woodward T. S., Weinstein S., Cairo T. A., Metzak P., Ngan E. T. C., Kumar D., Hallucinations are associated with aberrant activation in inner speech regions during source monitoring, Schizophr. Res., 2008, 102,Suppl. 2, 96

    Article  Google Scholar 

  36. Tausk V., On the origin of the “influencing machine” in schizophrenia, Psychoanal. Quart., 1933, 2, 519–556

    Google Scholar 

  37. Ferrarelli F., Huber R., Peterson M. J., Massimini M., Murphy M., Riedner B. A., et al., Reduced sleep spindle activity in schizophrenia patients, Am. J. Psych., 2007, 164, 483–492

    Article  Google Scholar 

  38. Destexhe A., Hughes S. W., Rudolph M., Crunelli V., Are corticothalamic ‘up’ states fragments of wakefulness?, Trends Neurosci., 2007, 30, 334–342

    Article  PubMed  CAS  Google Scholar 

  39. Ferrarelli F., Peterson M. J., Sarasso S., Riedner B. A., Murphy M. J., Benca R. M., et al., Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles, Am. J. Psych., 2010, 167, 1339–1348

    Article  Google Scholar 

  40. Seeck-Hirschner M., Baier P. C., Sever S., Buschbacher A., Aldenhoff J. B., Göder R., Effects of daytime naps on procedural and declarative memory in patients with schizophrenia, J. Psychiatr. Res., 2009, 44, 42–47

    Article  PubMed  Google Scholar 

  41. Manoach D. S., Thakkar K. N., Stroynowski E., Ely A., McKinley S. K., Wamsley E., et al., Reduced overnight consolidation of procedural learning in chronic medicated schizophrenia is related to specific sleep stages, J. Psychiatr. Res., 2010, 44, 122–120

    Article  Google Scholar 

  42. Wamsley E. J., Tucker M. A., Schinn A. K., Ono K. E., McKinley S. K., Ely A. V., et al., Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation?, Biol. Psychiatry, 2012, 71, 154–161

    Article  PubMed  Google Scholar 

  43. Ferrarelli F., Tononi G., The thalamic reticular nucleus and schizophrenia, Schizophr. Bull., 2011, 37, 306–315

    Article  PubMed  Google Scholar 

  44. Keshavan M. S., Reynolds C. F. 3rd, Miewald M. J., Montrose D. M., Sweeney J. A., Vasko R. C. Jr., et al., Delta sleep deficits in schizophrenia: evidence from automated analyses of sleep data, Arch. Gen. Psychiatry, 1998, 55, 443–448

    Article  PubMed  CAS  Google Scholar 

  45. Buzsáki G., The thalamic clock: emergent network properties, Neuroscience, 1991, 41, 351–364

    Article  PubMed  Google Scholar 

  46. Mölle M., Marshall L., Gais S., Born J., Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep, J. Neurosci., 2002, 22, 10941–10947

    PubMed  Google Scholar 

  47. Steriade M., Neuronal substrates of sleep and epilepsy, Cambridge University Press, 2003

  48. Bazhenov M., Timofeev I., Steriade M., Sejnowski T., Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks, J. Neurophysiol., 2000, 84, 1076–1087

    PubMed  CAS  Google Scholar 

  49. Swadlow H. A., Gusev A. G., The impact of’ bursting’ thalamic impulses at a neocortical synapse, Nat. Neurosci., 2001, 4, 402–408

    Article  PubMed  CAS  Google Scholar 

  50. Kim U., Sanchez-Vives M. V., McCormick D. A., Functional dynamics of GABAergic inhibition in the thalamus, Science, 1997, 278, 130–134

    Article  PubMed  CAS  Google Scholar 

  51. Owen M. J., O’Donovan M. C., Thapar A., Craddock N., Neurodevelopmental hypothesis of schizophrenia, Br. J. Psychiatry, 2011, 198, 173–175

    Article  PubMed  Google Scholar 

  52. Parnas J., Bovet P., Zahavi D., Schizophrenic autism: clinical phenomenology and pathogenic implications, World Psychiatry, 2002, 1, 131–136

    PubMed  Google Scholar 

  53. Laumonnier F., Roger S., Guerin P., Molinari F., M’Rad R., Cahard D., et. al., Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation, Am. J. Psychiatry, 2006, 163, 1622–1629

    Article  PubMed  Google Scholar 

  54. Limoges E., Mottron L., Bolduc C., Berthiaume C., Godbout R., Atypical sleep architecture and the autism phenotype, Brain, 2005, 128, 1049–1061

    Article  PubMed  Google Scholar 

  55. Khazipov R., Luhmann H. J., Early patterns of elecrtical activity in the developing cerebral cortex of humans and rodents, Trends Neurosci., 2006, 29, 414–418

    Article  PubMed  CAS  Google Scholar 

  56. Minlebaev M., Ben-Ari Y., Khazipov R., Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo, J. Neurophysiol., 2007, 97, 692–700

    Article  PubMed  CAS  Google Scholar 

  57. Mohns E. J., Blumberg M. S., Neocortical activation of the hippocampus during sleep in infant rats, J. Neurosci., 2010, 30, 3438–3449

    Article  PubMed  CAS  Google Scholar 

  58. Hanganu I. L., Ben-Ari Y., Khazipov R., Retinal waves trigger spindle bursts in the neonatal rat visual cortex, J. Neurosci., 2006, 26, 6728–6736

    Article  PubMed  CAS  Google Scholar 

  59. Colonnese M. T., Kaminska A., Minlebaev M., Milh M., Bloem B., Lescure S., et al., A conserved switch in sensory processing prepares developing neocortex for vision, Neuron, 2010, 67, 480–498

    Article  PubMed  CAS  Google Scholar 

  60. Tritsch N. X., Bergles D. E., Developmental regulation of spontaneous activity in the mammalian cochlea, J. Neurosci., 2010, 30, 1539–1550

    Article  PubMed  CAS  Google Scholar 

  61. Halasz P., Terzano M., Parrino L., Bodizs R., The nature of arousal in sleep, J. Sleep Res., 2004, 13, 1–23

    Article  PubMed  Google Scholar 

  62. Pinault D., Dysfunctional thalamus-related networks in schizophrenia, Schizophr. Bull., 2011, 37, 238–243

    Article  PubMed  Google Scholar 

  63. Sato Y., Fukuoka Y., Minamitani H., Honda K., Sensory stimulation triggers spindles during sleep stage 2, Sleep, 2007, 30, 511–518

    PubMed  Google Scholar 

  64. Andrillon T., Nir Y., Staba R. J., Ferrarelli F., Cirelli C., Tononi G., Sleep spindles in humans: insights from intracranial EEG and unit recordings, J. Neurosci., 2011, 31, 17821–17834

    Article  PubMed  CAS  Google Scholar 

  65. Pivik R. T., Joncas S., Busby K. A., Sleep spindles and arousal: the effects of age and sensory stimulation, Sleep Res. Online, 1999, 2, 89–100

    PubMed  CAS  Google Scholar 

  66. Marcell A. V., Adolescence, In: Kliegman R. M., Behrman R. E., Jenson H. B., Stanton B. F. (eds.), Nelson textbook of pediatrics, 18th ed., Saunders Elsevier, Philadelphia, PA, 2007

    Google Scholar 

  67. Cohrs S., Sleep disturbances in patients with schizophrenia: impact and effect of antipsychotics, CNS Drugs, 2008, 22, 939–962

    Article  PubMed  CAS  Google Scholar 

  68. Benson K. L., Sleep in schizophrenia, Sleep Med. Clin., 2008, 3, 251–260

    Article  Google Scholar 

  69. Monti J. M., Monti D., Sleep in schizophrenia patients and the effects of antipsychotic drugs, Sleep Med. Rev., 2004, 8, 133–148

    Article  PubMed  Google Scholar 

  70. Shepard P. D., Canavier C. C., Levitan E. S., Ether-a-go-go-related gene potassium channels: what’s all the buzz about?, Schizophr. Bull., 2007, 33, 1263–1269

    Article  PubMed  Google Scholar 

  71. Papa M., Boscea F., Canitano A., Castaldo P., Selletti S., Annunziato L., et al., Expression pattern of the ether-a-gogo-related (ERG) K+ channel-encoding genes ERG1, ERG2, and ERG3 in the adult rat central nervous system, J. Comp. Neurol., 2003, 466, 119–135

    Article  PubMed  CAS  Google Scholar 

  72. Saganich M. J., Machado E., Rudy B., Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain, J. Neurosci., 2001, 21, 4609–4624

    PubMed  CAS  Google Scholar 

  73. Welch K.A., Stanfield A.C., McIntosh A.M., Whalley H.C., Job D.E., Moorhead T.W., Impact of cannabis use on thalamic volume in people at familial high risk of schizophrenia, Br. J. Psychiatry, 2011, 199, 386–390

    Article  PubMed  Google Scholar 

  74. Di Forti M., Henquet C., Verdoux H., Murray R. M., van Os J., Which cannabis users develop psychosis? In: Castle D., Murray R. M., D’souza D. C. (eds), Marijuana and madness, Cambridge University Press, Cambridge, UK, 2012

    Google Scholar 

  75. Snutch T. P., David L. S., T-type calcium channels: an emerging therapeutic target for the treatment of pain, Drug Develop. Res., 2006, 67, 404–415

    Article  CAS  Google Scholar 

  76. Ross H. R., Napier I., Connor M., Inhibition of recombinant human T-type calcium channels by delta 9-tetrahydrocannabinol and cannabidiol, J. Biol. Chem., 2008, 283, 16124–16134

    Article  PubMed  CAS  Google Scholar 

  77. Spinoza, B., The ethics, treatise on the emendation of the intellect, and selected letters, 2nd ed., Hackett, Indianapolis, IN, 1991

    Google Scholar 

  78. Freud S., The standard edition of the complete psychological works of Sigmund Freud, Hogarth Press, London, 1953–74

    Google Scholar 

  79. Christensen M. S., Lundbye-Jensen J., Geertsen S. S., Peterson T. H., Paulson O. B., Nielsen J. B., Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback, Nat. Neurosci., 2007, 10, 417–419

    PubMed  CAS  Google Scholar 

  80. Buzsáki G., Petit mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker, Neuroscience, 1990, 36, 1–14

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Vukadinovic.

About this article

Cite this article

Vukadinovic, Z. Schizophrenia as a disturbance of cortical sensory maps. Translat.Neurosci. 3, 388–398 (2012). https://doi.org/10.2478/s13380-012-0043-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0043-8

Keywords

Navigation