Translational Neuroscience

, Volume 3, Issue 4, pp 334–344 | Cite as

Homeostatic function of astrocytes: Ca2+ and Na+ signalling

Review Article

Abstract

The name astroglia unifies many non-excitable neural cells that act as primary homeostatic cells in the nervous system. Neuronal activity triggers multiple homeostatic responses of astroglia that include increase in metabolic activity and synthesis of neuronal preferred energy substrate lactate, clearance of neurotransmitters and buffering of extracellular K+ ions to name but a few. Many (if not all) of astroglial homeostatic responses are controlled by dynamic changes in the cytoplasmic concentration of two cations, Ca2+ and Na+. Intracellular concentration of these ions is tightly controlled by several transporters and can be rapidly affected by the activation of respective fluxes through ionic channels or ion exchangers. Here, we provide a comprehensive review of astroglial Ca2+ and Na+ signalling.

Keywords

Astrocyte Homeostasis Excitability Ca2+ signalling Na+ signalling 

Abbreviations

AMPA

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

[Ca2+]i

cytoplasmic free Ca2+ concentration

[Ca2+]L

intra-ER (or intraluminal) free Ca2+ concentration

CNS

central nervous system

CRAC

Ca2+-release activated Ca2+

ER

endoplasmic reticulum

GABA

γ-aminobutyric acid

InsP3R

inositol 1,4,5 trisphosphate (InsP3)-gated Ca2+ channel/receptor

[Na+]i

cytoplasmic Na+ concentration

NCX

Na+/Ca2+ exchanger

NKA

Na+/K+ ATPase

NMDA

N-methyl D-aspartate

PLC

phospholipase C

PMCA

plasmalemmal Ca2+ ATPase

RyR

ryanodine receptor

SERCA

sarco(endoplasmic) reticulum Ca2+ ATPase

SLC

solute carrier

TRP

transient receptor potential

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lenhossek M.v., Zur Kenntnis der Neuroglia des menschlichen Ruckenmarkes, Verh. Anat. Ges, 1891, 5, 193–221Google Scholar
  2. [2]
    Lenhossek M.v., Der feinere Bau des Nervensystems im Lichte neuester Forschung, Fischer’s Medicinische Buchhandlung H. Kornfield, Berlin, 2nd Ed. 1895Google Scholar
  3. [3]
    Kimelberg H.K., Functions of mature mammalian astrocytes: a current view, Neuroscientist, 2010, 16, 79–106PubMedCrossRefGoogle Scholar
  4. [4]
    Kimelberg H.K., Nedergaard M., Functions of astrocytes and their potential as therapeutic targets, Neurotherapeutics, 2010, 7, 338–353PubMedCrossRefGoogle Scholar
  5. [5]
    Nedergaard M., Ransom B., Goldman S.A., New roles for astrocytes: redefining the functional architecture of the brain, Trends Neurosci., 2003, 26, 523–530PubMedCrossRefGoogle Scholar
  6. [6]
    Oberheim N.A., Goldman S.A., Nedergaard M., Heterogeneity of astrocytic form and function, Methods Mol. Biol., 2012, 814, 23–45PubMedCrossRefGoogle Scholar
  7. [7]
    Oberheim N.A., Takano T., Han X., He W., Lin J.H., Wang F., et al., Uniquely hominid features of adult human astrocytes, J. Neurosci., 2009, 29, 3276–3287PubMedCrossRefGoogle Scholar
  8. [8]
    Oberheim N.A., Wang X., Goldman S., Nedergaard M., Astrocytic complexity distinguishes the human brain, Trends Neurosci., 2006, 29, 547–553PubMedCrossRefGoogle Scholar
  9. [9]
    Verkhratsky A., Physiology of neuronal-glial networking, Neurochem. Int., 2010, 57, 332–343PubMedCrossRefGoogle Scholar
  10. [10]
    Verkhratsky A., Parpura V., Rodriguez J.J., Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”, Brain Res. Rev., 2011, 66, 133–151PubMedCrossRefGoogle Scholar
  11. [11]
    Verkhratsky A., Butt A., Glial Neurobiology. A textbook, John Wiley & Sons, Chichester, 2007CrossRefGoogle Scholar
  12. [12]
    Verkhratsky A., Toescu E.C., Neuronal-glial networks as substrate for CNS integration, J. Cell. Mol. Med., 2006, 10, 826–836PubMedCrossRefGoogle Scholar
  13. [13]
    Verkhratsky A., Rodriguez J.J., Parpura V., Calcium signalling in astroglia, Mol. Cell. Endocrinol., 2012, 353, 45–56PubMedCrossRefGoogle Scholar
  14. [14]
    Parpura V., Verkhratsky A., Neuroglia at the crossroads of homoeostasis, metabolism and signalling: evolution of the concept, ASN Neuro, 2012, 4Google Scholar
  15. [15]
    Parpura V., Heneka M.T., Montana V., Oliet S.H., Schousboe A., Haydon P.G., et al., Glial cells in (patho)physiology, J. Neurochem., 2012, 121, 4–27PubMedCrossRefGoogle Scholar
  16. [16]
    Parpura V., Verkhratsky A., The astrocyte excitability brief: From receptors to gliotransmission, Neurochem. Int., 2012, 61, 610–621PubMedCrossRefGoogle Scholar
  17. [17]
    Hodgkin A.L., Huxley A.F., Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol., 1952, 116, 449–472PubMedGoogle Scholar
  18. [18]
    Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 1952, 117, 500–544PubMedGoogle Scholar
  19. [19]
    Katz B., Miledi R., Propagation of electric activity in motor nerve terminals, Proc. R. Soc. Lond. B. Biol. Sci., 1965, 161, 453–482PubMedCrossRefGoogle Scholar
  20. [20]
    Katz B., Miledi R., The effect of calcium on acetylcholine release from motor nerve terminals, Proc. R. Soc. Lond. B Biol. Sci., 1965, 161, 496–503PubMedCrossRefGoogle Scholar
  21. [21]
    Augustine G.J., How does calcium trigger neurotransmitter release?, Curr. Opin. Neurobiol., 2001, 11, 320–326PubMedCrossRefGoogle Scholar
  22. [22]
    Barclay J.W., Morgan A., Burgoyne R.D., Calcium-dependent regulation of exocytosis, Cell Calcium, 2005, 38, 343–353PubMedCrossRefGoogle Scholar
  23. [23]
    Dermietzel R., Gap junction wiring: a ‘new’ principle in cell-to-cell communication in the nervous system?, Brain Res. Rev., 1998, 26, 176–183PubMedCrossRefGoogle Scholar
  24. [24]
    Dermietzel R., Spray D.C., Gap junctions in the brain: where, what type, how many and why?, Trends Neurosci., 1993, 16, 186–192PubMedCrossRefGoogle Scholar
  25. [25]
    Nagy J.I., Dudek F.E., Rash J.E., Update on connexins and gap junctions in neurons and glia in the mammalian nervous system, Brain Res. Rev., 2004, 47, 191–215PubMedCrossRefGoogle Scholar
  26. [26]
    Theis M., Sohl G., Eiberger J., Willecke K., Emerging complexities in identity and function of glial connexins, Trends Neurosci., 2005, 28, 188–195PubMedCrossRefGoogle Scholar
  27. [27]
    Dermietzel R., Gao Y., Scemes E., Vieira D., Urban M., Kremer M., et al., Connexin43 null mice reveal that astrocytes express multiple connexins, Brain Res. Rev., 2000, 32, 45–56PubMedCrossRefGoogle Scholar
  28. [28]
    Guthrie P.B., Segal M., Kater S.B., Independent regulation of calcium revealed by imaging dendritic spines, Nature, 1991, 354, 76–80PubMedCrossRefGoogle Scholar
  29. [29]
    Stout C.E., Costantin J.L., Naus C.C., Charles A.C., Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels, J. Biol. Chem., 2002, 277, 10482–10488PubMedCrossRefGoogle Scholar
  30. [30]
    Cotrina M.L., Lin J.H., Lopez-Garcia J.C., Naus C.C., Nedergaard M., ATP-mediated glia signaling, J. Neurosci., 2000, 20, 2835–2844PubMedGoogle Scholar
  31. [31]
    Arcuino G., Lin J.H., Takano T., Liu C., Jiang L., Gao Q., et al., Intercellular calcium signaling mediated by point-source burst release of ATP, Proc. Natl. Acad. Sci. USA, 2002, 99, 9840–9845PubMedCrossRefGoogle Scholar
  32. [32]
    Di Castro M.A., Chuquet J., Liaudet N., Bhaukaurally K., Santello M., Bouvier D., et al., Local Ca2+ detection and modulation of synaptic release by astrocytes, Nat. Neurosci., 2011, 14, 1276–1284PubMedCrossRefGoogle Scholar
  33. [33]
    Panatier A., Vallee J., Haber M., Murai K.K., Lacaille J.C., Robitaille R., Astrocytes are endogenous regulators of basal transmission at central synapses, Cell, 2011, 146, 785–798PubMedCrossRefGoogle Scholar
  34. [34]
    Shigetomi E., Tong X., Kwan K.Y., Corey D.P., Khakh B.S., TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3, Nat. Neurosci., 2011, 15, 70–80PubMedCrossRefGoogle Scholar
  35. [35]
    Case R.M., Eisner D., Gurney A., Jones O., Muallem S., Verkhratsky A., Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system, Cell Calcium, 2007, 42, 345–350PubMedCrossRefGoogle Scholar
  36. [36]
    Petersen O.H., Michalak M., Verkhratsky A., Calcium signalling: past, present and future, Cell Calcium, 2005, 38, 161–169CrossRefGoogle Scholar
  37. [37]
    Solovyova N., Verkhratsky A., Neuronal endoplasmic reticulum acts as a single functional Ca2+ store shared by ryanodine and inositol-1,4,5-trisphosphate receptors as revealed by intra-ER [Ca2+]_recordings in single rat sensory neurones, Pflugers Arch., 2003, 446, 447–454PubMedCrossRefGoogle Scholar
  38. [38]
    Petersen O.H., Verkhratsky A., Endoplasmic reticulum calcium tunnels integrate signalling in polarised cells, Cell Calcium, 2007, 42, 373–378PubMedCrossRefGoogle Scholar
  39. [39]
    Altschuld R.A., Hohl C.M., Castillo L.C., Garleb A.A., Starling R.C., Brierley G.P., Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes, Am. J. Physiol., 1992, 262, H1699–1704PubMedGoogle Scholar
  40. [40]
    Nicholls D.G., Mitochondria and calcium signaling, Cell Calcium, 2005, 38, 311–317PubMedCrossRefGoogle Scholar
  41. [41]
    Berridge M.J., Bootman M.D., Roderick H.L., Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell. Biol., 2003, 4, 517–529PubMedCrossRefGoogle Scholar
  42. [42]
    Berridge M.J., Lipp P., Bootman M.D., The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell. Biol., 2000, 1, 11–21PubMedCrossRefGoogle Scholar
  43. [43]
    Burdakov D., Petersen O.H., Verkhratsky A., Intraluminal calcium as a primary regulator of endoplasmic reticulum function, Cell Calcium, 2005, 38, 303–310PubMedCrossRefGoogle Scholar
  44. [44]
    Guerrero-Hernandez A., Dagnino-Acosta A., Verkhratsky A., An intelligent sarco-endoplasmic reticulum Ca2+ store: release and leak channels have differential access to a concealed Ca2+ pool, Cell Calcium, 2010, 48, 143–149PubMedCrossRefGoogle Scholar
  45. [45]
    Kopach O., Kruglikov I., Pivneva T., Voitenko N., Verkhratsky A., Fedirko N., Mitochondria adjust Ca(2+) signaling regime to a pattern of stimulation in salivary acinar cells, Biochim. Biophys. Acta, 2011, 1813, 1740–1748PubMedCrossRefGoogle Scholar
  46. [46]
    Parekh A.B., Mitochondrial regulation of store-operated CRAC channels, Cell Calcium, 2008, 44, 6–13PubMedCrossRefGoogle Scholar
  47. [47]
    Charles A.C., Dirksen E.R., Merrill J.E., Sanderson M.J., Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin, Glia, 1993, 7, 134–145PubMedCrossRefGoogle Scholar
  48. [48]
    Charles A.C., Merrill J.E., Dirksen E.R., Sanderson M.J., Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate, Neuron, 1991, 6, 983–992PubMedCrossRefGoogle Scholar
  49. [49]
    Cornell Bell A.H., Finkbeiner S.M., Cooper M.S., Smith S.J., Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling, Science, 1990, 247, 470–473PubMedCrossRefGoogle Scholar
  50. [50]
    Finkbeiner S.M., Glial calcium, Glia, 1993, 9, 83–104PubMedCrossRefGoogle Scholar
  51. [51]
    Verkhratsky A., Kettenmann H., Calcium signalling in glial cells, Trends Neurosci., 1996, 19, 346–352PubMedCrossRefGoogle Scholar
  52. [52]
    Verkhratsky A., Orkand R.K., Kettenmann H., Glial calcium: homeostasis and signaling function, Physiol. Rev., 1998, 78, 99–141PubMedGoogle Scholar
  53. [53]
    Kirischuk S., Moller T., Voitenko N., Kettenmann H., Verkhratsky A., ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells, J. Neurosci., 1995, 15, 7861–7871PubMedGoogle Scholar
  54. [54]
    Kirischuk S., Tuschick S., Verkhratsky A., Kettenmann H., Calcium signalling in mouse Bergmann glial cells mediated by a1-adrenoreceptors and H1 histamine receptors, Eur. J. Neurosci., 1996, 8, 1198–1208PubMedCrossRefGoogle Scholar
  55. [55]
    Kirischuk S., Kirchhoff F., Matyash V., Kettenmann H., Verkhratsky A., Glutamate-triggered calcium signalling in mouse bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release, Neuroscience, 1999, 92, 1051–1059PubMedCrossRefGoogle Scholar
  56. [56]
    Porter J.T., McCarthy K.D., Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ, J. Neurochem., 1995, 65, 1515–1523PubMedCrossRefGoogle Scholar
  57. [57]
    Zorec R., Araque A., Carmignoto G., Haydon P.G., Verkhratsky A., Parpura V., Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route, ASN Neuro, 2012, 4, pii: e00080PubMedCrossRefGoogle Scholar
  58. [58]
    Verkhratsky A., Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons, Physiol. Rev., 2005, 85, 201–279PubMedCrossRefGoogle Scholar
  59. [59]
    Michalak M., Robert Parker J.M., Opas M., Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum, Cell Calcium, 2002, 32, 269–278PubMedCrossRefGoogle Scholar
  60. [60]
    Baumann O., Walz B., Endoplasmic reticulum of animal cells and its organization into structural and functional domains, Int. Rev. Cytol., 2001, 205, 149–214PubMedCrossRefGoogle Scholar
  61. [61]
    Berridge M.J., The endoplasmic reticulum: a multifunctional signaling organelle, Cell Calcium, 2002, 32, 235–249PubMedCrossRefGoogle Scholar
  62. [62]
    Alonso M.T., Barrero M.J., Michelena P., Carnicero E., Cuchillo I., Garcia A.G., et al., Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin, J. Cell Biol., 1999, 144, 241–254PubMedCrossRefGoogle Scholar
  63. [63]
    Mogami H., Tepikin A.V., Petersen O.H., Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen, EMBO J., 1998, 17, 435–442PubMedCrossRefGoogle Scholar
  64. [64]
    Solovyova N., Verkhratsky A., Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches, J. Neurosci. Methods, 2002, 122, 1–12PubMedCrossRefGoogle Scholar
  65. [65]
    Solovyova N., Veselovsky N., Toescu E.C., Verkhratsky A., Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry, EMBO J., 2002, 21, 622–630PubMedCrossRefGoogle Scholar
  66. [66]
    Verkhratsky A., Petersen O.H., The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death, Eur. J. Pharmacol., 2002, 447, 141–154PubMedCrossRefGoogle Scholar
  67. [67]
    Agulhon C., Petravicz J., McMullen A.B., Sweger E.J., Minton S.K., Taves S.R., et al., What is the role of astrocyte calcium in neurophysiology?, Neuron, 2008, 59, 932–946PubMedCrossRefGoogle Scholar
  68. [68]
    Matyash M., Matyash V., Nolte C., Sorrentino V., Kettenmann H., Requirement of functional ryanodine receptor type 3 for astrocyte migration, FASEB J., 2002, 16, 84–86PubMedGoogle Scholar
  69. [69]
    Verkhratsky A., Solovyova N., Toescu E.C., Calcium excitability of glial cells, In: Volterra A., Haydon P., Magistretti P. (Eds.), Glia in synaptic transmission, OUP, Oxford, 2002Google Scholar
  70. [70]
    Beck A., Nieden R.Z., Schneider H.P., Deitmer J.W., Calcium release from intracellular stores in rodent astrocytes and neurons in situ, Cell Calcium, 2004, 35, 47–58PubMedCrossRefGoogle Scholar
  71. [71]
    Hua X., Malarkey E.B., Sunjara V., Rosenwald S.E., Li W.H., Parpura V., Ca2+-dependent glutamate release involves two classes of endoplasmic reticulum Ca2+ stores in astrocytes, J. Neurosci. Res., 2004, 76, 86–97PubMedCrossRefGoogle Scholar
  72. [72]
    Giaume C., Venance L., Intercellular calcium signaling and gap junctional communication in astrocytes, Glia, 1998, 24, 50–64PubMedCrossRefGoogle Scholar
  73. [73]
    Scemes E., Giaume C., Astrocyte calcium waves: what they are and what they do, Glia, 2006, 54, 716–725PubMedCrossRefGoogle Scholar
  74. [74]
    Verderio C., Bruzzone S., Zocchi E., Fedele E., Schenk U., De Flora A., et al., Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes, J. Neurochem., 2001, 78, 646–657PubMedCrossRefGoogle Scholar
  75. [75]
    Bruzzone S., Verderio C., Schenk U., Fedele E., Zocchi E., Matteoli M., et al., Glutamate-mediated overexpression of CD38 in astrocytes cultured with neurones, J. Neurochem., 2004, 89, 264–272PubMedCrossRefGoogle Scholar
  76. [76]
    Heidemann A.C., Schipke C.G., Kettenmann H., Extracellular application of nicotinic acid adenine dinucleotide phosphate induces Ca2+ signaling in astrocytes in situ, J. Biol. Chem., 2005, 280, 35630–35640PubMedCrossRefGoogle Scholar
  77. [77]
    Singaravelu K., Deitmer J.W., Calcium mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) in rat astrocytes, Cell Calcium, 2006, 39, 143–153PubMedCrossRefGoogle Scholar
  78. [78]
    Barcelo-Torns M., Lewis A.M., Gubern A., Barneda D., Bloor-Young D., Picatoste F., et al., NAADP mediates ATP-induced Ca2+ signals in astrocytes, FEBS Lett., 2011, 585, 2300–2306PubMedCrossRefGoogle Scholar
  79. [79]
    Malarkey E.B., Parpura V., Mechanisms of transmitter release from astrocytes, In: Parpura V. Haydon P.G. (Eds.), Astrocytes in (patho) physiology of the nervous system, Springer, New York, 2009Google Scholar
  80. [80]
    Parpura V., Grubisic V., Verkhratsky A., Ca2+ sources for the exocytotic release of glutamate from astrocytes, Biochim. Biophys. Acta, 2011, 1813, 984–991PubMedCrossRefGoogle Scholar
  81. [81]
    D’Ascenzo M., Fellin T., Terunuma M., Revilla-Sanchez R., Meaney D.F., Auberson Y.P., et al., mGluR5 stimulates gliotransmission in the nucleus accumbens, Proc. Natl. Acad. Sci. USA, 2007, 104, 1995–2000PubMedCrossRefGoogle Scholar
  82. [82]
    Fellin T., Pascual O., Gobbo S., Pozzan T., Haydon P.G., Carmignoto G., Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors, Neuron, 2004, 43, 729–743PubMedCrossRefGoogle Scholar
  83. [83]
    Shigetomi E., Bowser D.N., Sofroniew M.V., Khakh B.S., Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons, J. Neurosci., 2008, 28, 6659–6663PubMedCrossRefGoogle Scholar
  84. [84]
    Putney J.W.Jr., A model for receptor-regulated calcium entry, Cell Calcium, 1986, 7, 1–12PubMedCrossRefGoogle Scholar
  85. [85]
    Putney J.W.Jr., Capacitative calcium entry revisited, Cell Calcium, 1990, 11, 611–624PubMedCrossRefGoogle Scholar
  86. [86]
    Parekh A.B., Putney J.W.Jr., Store-operated calcium channels, Physiol. Rev., 2005, 85, 757–810PubMedCrossRefGoogle Scholar
  87. [87]
    Feske S., Gwack Y., Prakriya M., Srikanth S., Puppel S.H., Tanasa B., et al., A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function, Nature, 2006, 441, 179–185PubMedCrossRefGoogle Scholar
  88. [88]
    Putney J.W.Jr., Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here), Cell Calcium, 2007, 42, 103–110PubMedCrossRefGoogle Scholar
  89. [89]
    Smyth J.T., Dehaven W.I., Jones B.F., Mercer J.C., Trebak M., Vazquez G., et al., Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP, Biochim. Biophys. Acta, 2006, 1763, 1147–1160CrossRefGoogle Scholar
  90. [90]
    Pivneva T., Haas B., Reyes-Haro D., Laube G., Veh R.W., Nolte C., et al., Store-operated Ca2+ entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ, Cell Calcium, 2008, 43, 591–601PubMedCrossRefGoogle Scholar
  91. [91]
    Tuschick S., Kirischuk S., Kirchhoff F., Liefeldt L., Paul M., Verkhratsky A., et al., Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals, Cell Calcium, 1997, 21, 409–419PubMedCrossRefGoogle Scholar
  92. [92]
    Golovina V.A., Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum, J. Physiol., 2005, 564, 737–749PubMedCrossRefGoogle Scholar
  93. [93]
    Grimaldi M., Maratos M., Verma A., Transient receptor potential channel activation causes a novel form of [Ca2+]I oscillations and is not involved in capacitative Ca2+ entry in glial cells, J. Neurosci., 2003, 23, 4737–4745PubMedGoogle Scholar
  94. [94]
    Pizzo P., Burgo A., Pozzan T., Fasolato C., Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes, J. Neurochem., 2001, 79, 98–109PubMedCrossRefGoogle Scholar
  95. [95]
    Malarkey E.B., Ni Y., Parpura V., Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes, Glia, 2008, 56, 821–835PubMedCrossRefGoogle Scholar
  96. [96]
    Moreno C., Sampieri A., Vivas O., Pena-Segura C., Vaca L., STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes, Cell Calcium, 2012, in press, dx.doi.org/10.1016/j.ceca.2012.1008.1004Google Scholar
  97. [97]
    Lalo U., Pankratov Y., Parpura V., Verkhratsky A., Ionotropic receptors in neuronal-astroglial signalling: What is the role of „excitable“ molecules in non-excitable cells, Biochim. Biophys. Acta, 2011, 1813, 992–1002PubMedCrossRefGoogle Scholar
  98. [98]
    Verkhratsky A., Steinhauser C., Ion channels in glial cells, Brain Res. Rev., 2000, 32, 380–412PubMedCrossRefGoogle Scholar
  99. [99]
    Verkhratsky A., Krishtal O.A., Burnstock G., Purinoceptors on neuroglia, Mol. Neurobiol., 2009, 39, 190–208PubMedCrossRefGoogle Scholar
  100. [100]
    Muller T., Moller T., Berger T., Schnitzer J., Kettenmann H., Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells, Science, 1992, 256, 1563–1566PubMedCrossRefGoogle Scholar
  101. [101]
    Seifert G., Steinhauser C., Ionotropic glutamate receptors in astrocytes, Prog. Brain Res., 2001, 132, 287–299PubMedCrossRefGoogle Scholar
  102. [102]
    Lalo U., Palygin O., North R.A., Verkhratsky A., Pankratov Y., Agedependent remodelling of ionotropic signalling in cortical astroglia, Aging Cell, 2011, 10, 392–402PubMedCrossRefGoogle Scholar
  103. [103]
    Lalo U., Pankratov Y., Kirchhoff F., North R.A., Verkhratsky A., NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes, J. Neurosci., 2006, 26, 2673–2683PubMedCrossRefGoogle Scholar
  104. [104]
    Verkhratsky A., Kirchhoff F., NMDA receptors in glia, Neuroscientist, 2007, 13, 28–37PubMedCrossRefGoogle Scholar
  105. [105]
    Oliveira J.F., Riedel T., Leichsenring A., Heine C., Franke H., Krugel U., et al., Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations, Cereb. Cortex, 2011, 21, 806–820PubMedCrossRefGoogle Scholar
  106. [106]
    Palygin O., Lalo U., Verkhratsky A., Pankratov Y., Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes, Cell Calcium, 2010, 48, 225–231PubMedCrossRefGoogle Scholar
  107. [107]
    Lalo U., Pankratov Y., Wichert S.P., Rossner M.J., North R.A., Kirchhoff F., et al., P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes, J. Neurosci., 2008, 28, 5473–5480PubMedCrossRefGoogle Scholar
  108. [108]
    Franke H., Verkhratsky A., Burnstock G., Illes P., Pathophysiology of astroglial purinergic signalling, Purinergic Signal., 2012, 8, 629–657PubMedCrossRefGoogle Scholar
  109. [109]
    Tai C., Zhu S., Zhou N., TRPA1: the central molecule for chemical sensing in pain pathway?, J. Neurosci., 2008, 28, 1019–1021PubMedCrossRefGoogle Scholar
  110. [110]
    McNamara C.R., Mandel-Brehm J., Bautista D.M., Siemens J., Deranian K.L., Zhao M., et al., TRPA1 mediates formalin-induced pain, Proc. Natl. Acad. Sci. USA, 2007, 104, 13525–13530PubMedCrossRefGoogle Scholar
  111. [111]
    McMahon S.B., Wood J.N., Increasingly irritable and close to tears: TRPA1 in inflammatory pain, Cell, 2006, 124, 1123–1125PubMedCrossRefGoogle Scholar
  112. [112]
    Sawada Y., Hosokawa H., Hori A., Matsumura K., Kobayashi S., Cold sensitivity of recombinant TRPA1 channels, Brain Res., 2007, 1160, 39–46PubMedCrossRefGoogle Scholar
  113. [113]
    Gracheva E.O., Ingolia N.T., Kelly Y.M., Cordero-Morales J.F., Hollopeter G., Chesler A.T., et al., Molecular basis of infrared detection by snakes, Nature, 2010, 464, 1006–1011PubMedCrossRefGoogle Scholar
  114. [114]
    Rose C.R., Ransom B.R., Intracellular sodium homeostasis in rat hippocampal astrocytes, J. Physiol., 1996, 491, 291–305PubMedGoogle Scholar
  115. [115]
    Reyes R.C., Verkhratsky A., Parpura V., Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes, ASN Neuro, 2012, 4, e00075PubMedCrossRefGoogle Scholar
  116. [116]
    Unichenko P., Myakhar O., Kirischuk S., Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes, Glia, 2012, 60, 605–614PubMedCrossRefGoogle Scholar
  117. [117]
    Kirischuk S., Parpura V., Verkhratsky A., Sodium dynamics: another key to astroglial excitability?, Trends Neurosci, 2012, 35, 497–506PubMedCrossRefGoogle Scholar
  118. [118]
    Kiedrowski L., Wroblewski J.T., Costa E., Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate, Mol. Pharmacol., 1994, 45, 1050–1054PubMedGoogle Scholar
  119. [119]
    Knopfel T., Guatteo E., Bernardi G., Mercuri N.B., Hyperpolarization induces a rise in intracellular sodium concentration in dopamine cells of the substantia nigra pars compacta, Eur. J. Neurosci., 1998, 10, 1926–1929PubMedCrossRefGoogle Scholar
  120. [120]
    Pisani A., Calabresi P., Tozzi A., Bernardi G., Knopfel T., Early sodium elevations induced by combined oxygen and glucose deprivation in pyramidal cortical neurons, Eur. J. Neurosci., 1998, 10, 3572–3574PubMedCrossRefGoogle Scholar
  121. [121]
    Kimelberg H.K., Pang S., Treble D.H., Excitatory amino acidstimulated uptake of 22Na+ in primary astrocyte cultures, J. Neurosci., 1989, 9, 1141–1149PubMedGoogle Scholar
  122. [122]
    Bernardinelli Y., Magistretti P.J., Chatton J.Y., Astrocytes generate Na+-mediated metabolic waves, Proc. Natl. Acad. Sci. USA, 2004, 101, 14937–14942PubMedCrossRefGoogle Scholar
  123. [123]
    Rose C.R., Ransom B.R., Gap junctions equalize intracellular Na+ concentration in astrocytes, Glia, 1997, 20, 299–307PubMedCrossRefGoogle Scholar
  124. [124]
    Kirischuk S., Kettenmann H., Verkhratsky A., Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ, FASEB J, 1997, 11, 566–572PubMedGoogle Scholar
  125. [125]
    Kirischuk S., Kettenmann H., Verkhratsky A., Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells, Pflugers Arch., 2007, 454, 245–252PubMedCrossRefGoogle Scholar
  126. [126]
    Langer J., Stephan J., Theis M., Rose C.R., Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ, Glia, 2012, 60, 239–252PubMedCrossRefGoogle Scholar
  127. [127]
    Bennay M., Langer J., Meier S.D., Kafitz K.W., Rose C.R., Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission, Glia, 2008, 56, 1138–1149PubMedCrossRefGoogle Scholar
  128. [128]
    Langer J., Rose C.R., Synaptically induced sodium signals in hippocampal astrocytes in situ, J. Physiol., 2009, 587, 5859–5877PubMedCrossRefGoogle Scholar
  129. [129]
    Shimizu H., Watanabe E., Hiyama T.Y., Nagakura A., Fujikawa A., Okado H., et al., Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing, Neuron, 2007, 54, 59–72PubMedCrossRefGoogle Scholar
  130. [130]
    Hediger M.A., Romero M.F., Peng J.B., Rolfs A., Takanaga H., Bruford E.A., The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction, Pflugers Arch., 2004, 447, 465–468PubMedCrossRefGoogle Scholar
  131. [131]
    Ren Q., Chen K., Paulsen I.T., TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels, Nucleic Acids Res., 2007, 35, D274–D279PubMedCrossRefGoogle Scholar
  132. [132]
    Lytton J., Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport, Biochem. J., 2007, 406, 365–382PubMedCrossRefGoogle Scholar
  133. [133]
    Minelli A., Castaldo P., Gobbi P., Salucci S., Magi S., Amoroso S., Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat, Cell Calcium, 2007, 41, 221–234PubMedCrossRefGoogle Scholar
  134. [134]
    Paluzzi S., Alloisio S., Zappettini S., Milanese M., Raiteri L., Nobile M., et al., Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization, J. Neurochem., 2007, 103, 1196–1207PubMedCrossRefGoogle Scholar
  135. [135]
    Rojas H., Colina C., Ramos M., Benaim G., Jaffe E.H., Caputo C., et al., Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Cai 2+-induced Ca2+ release in rat cerebellar Type-1 astrocytes, J. Neurochem., 2007, 100, 1188–1202PubMedCrossRefGoogle Scholar
  136. [136]
    Danbolt N.C., Glutamate uptake, Progr. Neurobiol., 2001, 65, 1–105CrossRefGoogle Scholar
  137. [137]
    Hertz L., Zielke H.R., Astrocytic control of glutamatergic activity: astrocytes as stars of the show, Trends Neurosci., 2004, 27, 735–743PubMedCrossRefGoogle Scholar
  138. [138]
    Olabarria M., Noristani H.N., Verkhratsky A., Rodriguez J.J., Agedependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission?, Mol. Neurodegener., 2011, 6, 55PubMedCrossRefGoogle Scholar
  139. [139]
    Attwell D., Barbour B., Szatkowski M., Nonvesicular release of neurotransmitter, Neuron, 1993, 11, 401–407PubMedCrossRefGoogle Scholar
  140. [140]
    Palty R., Silverman W.F., Hershfinkel M., Caporale T., Sensi S.L., Parnis J., et al., NCLX is an essential component of mitochondrial Na+/Ca2+ exchange, Proc. Natl. Acad Sci. USA, 2010, 107, 436–441PubMedCrossRefGoogle Scholar
  141. [141]
    Mackenzie B., Erickson J.D., Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family, Pflugers Arch., 2004, 447, 784–795PubMedCrossRefGoogle Scholar
  142. [142]
    Ortinski P.I., Dong J., Mungenast A., Yue C., Takano H., Watson D.J., et al., Selective induction of astrocytic gliosis generates deficits in neuronal inhibition, Nat. Neurosci., 2010, 13, 584–591PubMedCrossRefGoogle Scholar
  143. [143]
    Benz B., Grima G., Do K.Q., Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling, Neuroscience, 2004, 124, 377–386PubMedCrossRefGoogle Scholar
  144. [144]
    Belanger M., Allaman I., Magistretti P.J., Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation, Cell Metab., 2011, 14, 724–738PubMedCrossRefGoogle Scholar
  145. [145]
    Pellerin L., Magistretti P.J., Sweet sixteen for ANLS, J. Cereb. Blood Flow Metab., 2012, E-pub ahead of print, doi: 10.1038/jcbfm.2011.149Google Scholar
  146. [146]
    Suzuki A., Stern S.A., Bozdagi O., Huntley G.W., Walker R.H., Magistretti P.J., et al., Astrocyte-neuron lactate transport is required for long-term memory formation, Cell, 2011, 144, 810–823PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain InstituteUniversity of AlabamaBirminghamUSA
  2. 2.Department of BiotechnologyUniversity of RijekaRijekaCroatia
  3. 3.IKERBASQUEBasque Foundation for ScienceBilbaoSpain
  4. 4.Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain
  5. 5.Faculty of Life SciencesThe University of ManchesterManchesterUK

Personalised recommendations