Skip to main content
Log in

Rodent models of early environment effects on offspring development and susceptibility to neurological diseases in adulthood

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Events early in life can program brain for a pattern of neuroendocrine and behavioral responses in later life. This mechanism is named “developmental phenotypic plasticity”. Experimental evidences from rodents show that early experiences influence long-term development of behavioral, neuroendocrine and cognitive functions. While some neonatal conditions lead to positive outcomes, offspring might also display neurological dysfunctions in adulthood in case of adverse conditions during the early development. Different factors have been suggested to mediate the effects of neonatal conditions on offspring development but their exact contribution as well as their interaction still needs to be clarified. Studies based on rodents have been developed to model the long-term effects of early environmental conditions on the developing brain. These studies highlight importance of maternal behavior in mediating the effects of early environmental conditions on the offspring. However, other studies suggest that aside from the level of maternal care, other factors (gender, neonatal glucocorticoid levels) contribute to the adjustment of offspring phenotype to early environmental cues. Altogether, rodents-based evidence suggests that developmental plasticity is a very complex phenomenon mediated by multiple factors that interact one to each other. Ultimately, the goal is to understand how early life events can lead to advantageous phenotype in adult life, or, on the contrary, can predispose individuals to psychopathologies such as depression or anxiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tollrian R., Predator-induced morphological defenses — costs, life history shifts, and maternal effects in Daphnia pulex, Ecology, 1995, 76, 1691–1705

    Article  Google Scholar 

  2. Agrawal A. A., Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness, Ecology, 1999, 80, 1713–1723

    Article  Google Scholar 

  3. Bateson P., Barker D., Clutton-Brock T., Deb D., D’Udine B., Foley R. A., et al., Developmental plasticity and human health, Nature, 2004, 430, 419–421

    Article  PubMed  CAS  Google Scholar 

  4. Francis D. D., Meaney M. J., Maternal care and the development of stress response, Curr. Opin. Neurobiol., 1999, 9, 128–134

    Article  PubMed  CAS  Google Scholar 

  5. Meaney M. J., Maternal care, gene expression and the transmission of individual differences in stress across generations, Ann. Rev. Neurosci., 2001, 24, 1161–1192

    Article  PubMed  CAS  Google Scholar 

  6. Champagne F. A., Francis D. D., Mar A., Meaney M. J., Variations in maternal care in the rat as a mediating influence for the effects of environment on development, Physiol. Behav., 2003, 79, 359–371

    Article  PubMed  CAS  Google Scholar 

  7. Cirulli F., Berry A., Alleva E., Early disruption of the mother-infant relationship: effects on brain plasticity and implications for psychopathology, Neurosci. Biobehav. Rev., 2003, 27, 73–82

    Article  PubMed  CAS  Google Scholar 

  8. Meaney M. J., Mitchell J. B., Aitken D. H., Bhatnagar S., Bodnoff S. R., Iny L. J., et al., The effects of neonatal handling on the development of the adrenocortical response to stress: implications to neurpathology and cognitive deficits in later life, Psychoneuroendocrinology, 1991, 16, 85–103

    Article  PubMed  CAS  Google Scholar 

  9. Liu D., Diorio J., Tannenbaum B., Caldji C., Francis D., Freedman A., et al., Maternal care, hippocampal glucocorticoid receptors and hypothalamic-pituitary-adrenal responses to stress, Science, 1997, 277, 1659–1661

    Article  PubMed  CAS  Google Scholar 

  10. Levine S., Alpert M., Lewis G. W., Infantile experience and the maturation of the pituitary adrenal axis, Science, 1957, 126, 1347

    Article  PubMed  CAS  Google Scholar 

  11. Macrì S., Mason G. J., Würbel H., Dissociation in the effects of neonatal maternal separations on maternal care and the offspring’s HPA and fear responses in rats, Eur. J. Neurosci., 2004, 20, 1017–1024

    Article  PubMed  Google Scholar 

  12. Tang A. C., Akers K. G., Reeb B. C., Romeo R. D., McEwen B. S., Programming social, cognitive, and neuroendocrine development by early exposure to novelty, Proc. Nat. Acad. Sci. USA, 2006, 103, 15716–15721

    Article  PubMed  CAS  Google Scholar 

  13. Macrì S., Würbel H., Effects of variations in postnatal maternal environment on maternal behavior and fear and stress responses in rats, Anim. Behav., 2007, 73, 171–184

    Article  Google Scholar 

  14. Coutellier L., Friedrich A. C., Failing K., Marashi V., Würbel H., Effects of rat odour and shelter on maternal behavior in C57BL/6 dams and on fear and stress responses in their adult offspring, Physiol. Behav., 2008, 94, 393–404

    Article  PubMed  CAS  Google Scholar 

  15. Coutellier L., Würbel H., Early environmental cues affect object recognition memory in adult female but not male C57Bl/6 mice, Behav. Brain Res., 2009, 203, 312–315

    Article  PubMed  Google Scholar 

  16. Plotsky P. M., Meaney M. J., Early, postnatal experience alters hypothalamic corticotropinreleasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats, Mol. Brain Res., 1993, 18, 195–200

    Article  PubMed  CAS  Google Scholar 

  17. Huot R. L., Gonzales M. E., Ladd C. O., Thrivikraman K. V., Plotsky P. M., Foster litters prevent hypothalamic-pituitary-adrenal axis sensitization mediated by neonatal maternal separation, Psychoneuroendocrinology, 2004, 29, 279–289

    Article  PubMed  CAS  Google Scholar 

  18. Huot R. L., Plotsky P. M., Lenox R. H., McNamara R. K., Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats, Brain Res., 2002, 950, 52–63

    Article  PubMed  CAS  Google Scholar 

  19. Aisa B., Gil-Bea F. J., Marcos B., Tordera R., Lasheras B., Del Rio J., et al., Neonatal stress affects vulnerability of cholinergic neurons and cognition in the rat: involvement of the HPA axis, Psychoneuroendocrinology, 2009, 34, 1495–1505

    Article  PubMed  CAS  Google Scholar 

  20. Meagher M. W., Sieve A. N., Johnson R. R., Satterlee D., Belyavski M., Mi W., et al., Neonatal maternal separation alters immune, endocrine and behavioral responses to acute Theilier’s virus infection in adult mice, Behav. Genet., 2010, 40, 233–249

    Article  PubMed  CAS  Google Scholar 

  21. Avitsur R., Hunzeker J., Sheridan J. F., Role of early stress in the individual differences in host response to viral infection, Brain Behav. Immun., 2006, 20, 339–348

    Article  PubMed  CAS  Google Scholar 

  22. Craft T. K., Zhang N., Glasper E. R., Hurn P. D., Devries A. C., Neonatal factors influence adult stroke outcome, Psychoneuroendocrinology, 2006, 31, 601–613

    Article  PubMed  Google Scholar 

  23. Chapillon P., Manneche C., Belzung C., Caston J., Rearing environmental enrichment in two inbred strains of mice. 1. Effects on emotional reactivity, Behav. Genet., 1999, 29, 41–46

    Article  PubMed  CAS  Google Scholar 

  24. Coutellier L., Friedrich A. C., Failing K., Würbel H., Variations in the postnatal maternal environment in mice: effects on maternal behavior and behavioral and endocrine responses in the adult offspring, Physiol. Behav., 2008, 93, 395–407

    Article  PubMed  CAS  Google Scholar 

  25. Anisman H., Zaharia M. D., Meaney M. J., Merali Z., Do early-events permanently alter behavioral and hormonal responses to stress?, Int. J. Dev. Neurosci., 1998, 16, 149–164

    Article  PubMed  CAS  Google Scholar 

  26. MacLeod J., Sinal C. J., Perrot-Sinal T. S., Evidence for non-genomic transmission of ecological information via maternal behavior in female rats, Genes Brain Behav., 2007, 6, 19–29

    Article  Google Scholar 

  27. Léonhardt M., Matthews S. G., Meaney M. J., Walker C-D., Psychological stressors as a model of maternal adversity: Diurnal modulation of corticosterone responses and changes in maternal behavior, Horm. Behav., 2007, 51, 77–88

    Article  PubMed  Google Scholar 

  28. Coutellier L., Friedrich A. C., Failing K., Marashi V., Würbel H., Effects of foraging demand on maternal behavior and adult offspring anxiety and stress response in C57Bl/6 mice, Behav. Brain Res., 2009, 196, 192–199

    Article  PubMed  Google Scholar 

  29. Weaver I. C., Cervoni N., Champagne F. A., D’Alessio A. C., Sharma S., Seckl J. R., et al., Epigenetic programming by maternal behavior, Nat. Neurosci., 2004, 7, 847–854

    Article  PubMed  CAS  Google Scholar 

  30. Caldji C., Tannenbaum B., Sharma S., Francis D., Plotsky P. M., Meaney M. J., Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat, Proc. Natl. Acad. Sci. USA, 1998, 95, 5335–5340

    Article  PubMed  CAS  Google Scholar 

  31. Sapolsky R. M., Why zebras don’t get ulcers: the acclaimed guide to stress, stress-related diseases, and coping, second ed., Henry Holt & Company, New York, 2004

    Google Scholar 

  32. Catalani A., Marinelli M., Scaccianoce S., Nicolai R., Muscolo L. A., Porcu A., et al., Progeny of mothers drinking corticosterone during lactation has lower stress-induced corticosterone secretion and better cognitive performance, Brain Res., 1993, 624, 209–215

    Article  PubMed  CAS  Google Scholar 

  33. Macrì S., Granstrem O., Shumilina M., Antunes Gomes Dos Santos F. J., Berry A., Saso L., et al., Resilience and vulnerability are dosedependently related to neonatal stressors in mice, Horm. Behav., 2009, 56, 391–398

    Article  PubMed  Google Scholar 

  34. Catalani A., Casolini P., Scaccianoce S., Patacchioli F. R., Spinozzi P., Angelucci L., Maternal corticosterone during lactation permanently affects brain corticosteroid receptors, stress response and behavior in rat progeny, Neuroscience, 2000, 100, 319–325

    Article  PubMed  CAS  Google Scholar 

  35. Brummelte S., Pawluski J. L., Galea L. A., High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring: a model of post-partum stress and possible depression, Horm. Behav., 2006, 50, 370–382

    Article  PubMed  CAS  Google Scholar 

  36. Romeo R. D., Mueller A., Sisti H. M., Ogawa S., McEwen B. S., Brake W. G., Anxiety and fear in adult male and female C57BL/6 mice are modulated by maternal separation, Horm. Behav., 2003, 43, 561–567

    Article  PubMed  Google Scholar 

  37. Barha C. K., Pawluski J. L., Galea L. A. M., Maternal care affects male and female offspring working memory and stress reactivity, Physiol. Behav., 2007, 92, 939–950

    Article  PubMed  CAS  Google Scholar 

  38. Noschang C. G., Krolow R., Fontella F. U., Arcego D. M., Diehl L. A., Weis S. N., et al., Neonatal handling impairs spatial memory and leads to altered notric oxide production and DNA breaks in a sex specific manner, Neurochem. Res., 2010, 35, 1083–1091

    Article  PubMed  CAS  Google Scholar 

  39. Desbonnet L., Garrett L., Daly E., McDermott K. W., Dinan T. G., Sexually dimorphic effects of maternal separation stress on corticotrophinreleasing factor and vasopressin systems in the adult rat brain, Int. J. Dev. Neurosci., 2008, 26, 259–268

    Article  PubMed  CAS  Google Scholar 

  40. Gross C. M., Flubacher A., Tinnes S., Heyer A., Scheller M., Herpfer I., et al., Early life stress stimulated hippocampal reelin gene expression in a sex-specific manner: evidence for corticosterone-mediated action, Hippocampus, 2010, 22, 409–420

    Article  PubMed  Google Scholar 

  41. Heim C., Nemeroff C. B., The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies, Biol. Psychiatry, 2001, 49, 1023–1039

    Article  PubMed  CAS  Google Scholar 

  42. Harlow H. F., Dodsworth R. O., Harlow M. K., Total social isolation in monkeys, Proc. Natl. Acad. Sci. USA, 1965, 54, 90–97

    Article  PubMed  CAS  Google Scholar 

  43. Harlow H. F., Harlow M. K., Suomi S. J., From thought to therapy: lessons from a primate laboratory, Am. Sci., 1971, 59, 538–549

    PubMed  CAS  Google Scholar 

  44. Daniels W. M. U., Pietersen C. Y., Carsten M. E., Stein D. J., Maternal separation in rats leads to anxiety-like behavior and an ACTH blunted response and altered neurotransmitter levels in response to a subsequent stressor, Metabol. Brain. Dis., 2004, 19, 3–14

    Article  CAS  Google Scholar 

  45. Millstein R. A., Holmes A., Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains, Neurosci. Biobehav. Rev., 2007, 31, 3–17

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Coutellier.

About this article

Cite this article

Coutellier, L. Rodent models of early environment effects on offspring development and susceptibility to neurological diseases in adulthood. Translat.Neurosci. 3, 258–262 (2012). https://doi.org/10.2478/s13380-012-0034-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0034-9

Keywords

Navigation