Skip to main content
Log in

Expression analysis of pluripotency-associated genes in human fetal cortical and striatal neural stem cells during differentiation

  • Research Article
  • Published:
Translational Neuroscience

Abstract

In the field of developmental biology, there is compelling evidence for a network of activity of pluripotency and stem-associated genes comprising of Oct4, Nanog and nestin. During neurogenesis, the choice between enhancement versus suppression of transcriptional modulation of these identified genes determines the balance between self-renewal neural stem cells (NSC) and immature neuronal phenotypes. By using immunocytochemistry and RT-PCR techniques, our study aims to address the question whether and to what extent mRNA and protein profiles are expressed in human fetal neurospheres obtained from cortical and striatal brain regions, both in expansion (undifferentiated cells) and differentiation conditions monitored after 1 and 4 weeks in vitro culturing. Our results clearly demonstrate the sustained presence of opposite signals: strong downregulation of Oct4 and Nanog genes in cortical differentiating cells and significant up-regulation for nestin gene both in cortical and striatal differentiating cells. Notably, by immunostaining techniques, Oct4 and Nanog protein expression have indicated the presence of both nuclear and cytoplasmic content followed by their rapid turnover (immediately after 1 week). Moreover, during the differentiation process, dissociated neurospheres displayed unexpected number of nestin positive cells accompanied by a constant level of staining intensity. In conclusion, the present study provides new insights into brain region related features in terms of Oct4, Nanog and nestin expression both at cellular and molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niwa H., How is pluripotency determined and maintained, Development, 2007, 134, 635–646

    Article  PubMed  CAS  Google Scholar 

  2. Liang J., Wan M., Zhang Y., Gu P., Xin H., Jung S.Y. et al., Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells, Nature Cell Biol., 2008, 10, 731–739

    Article  PubMed  CAS  Google Scholar 

  3. Chambers I., Tomlinson S.R., The transcriptional foundation of pluripotency, Development, 2009, 136, 2311–2322

    Article  PubMed  CAS  Google Scholar 

  4. Ivanova N.B., Dimos J.T., Schaniel C., Hackney J.A., Moore K.A., Lemischka I.R., A stem cell molecular signature, Science, 2002, 298, 601–604

    Article  PubMed  CAS  Google Scholar 

  5. Ramalho-Santos M., Yoon S., Matsuzaki Y., Mulligan R.C., Melton D.A., “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science, 2002, 298, 597–600

    Article  PubMed  CAS  Google Scholar 

  6. Hitoshi S., Seaberg R.M., Koscik C., Alexson T., Kusunoki S., Kanazawa I. et al., Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling, Genes Dev., 2004, 18, 1806–1811

    Article  PubMed  CAS  Google Scholar 

  7. Merkle F.T., Alvarez-Buylla A., Neural stem cells in mammalian development, Curr. Opin. Cell Biol., 2006, 18, 704–709

    Article  PubMed  CAS  Google Scholar 

  8. Takehara T., Teramura T., Onodera Y., Kishigami S., Matsumoto K., Saeki K. Et al., Potential existence of stem cells with multiple differentiation abilities to three different germ lineages in mouse neurospheres, Stem Cells Dev., 2009, 18, 1433–40

    Article  PubMed  CAS  Google Scholar 

  9. Kim J.B., Sebastiano V., Wu G., Araúzo-Bravo M.J., Sasse P., Gentile L., et al., Oct4-induced pluripotency in adult neural stem cells, Cell, 2009, 136, 411–419

    Article  PubMed  CAS  Google Scholar 

  10. Chin J-H., Shiwaku H., Goda O., Komuro A., Okazawa H., Neural stem cells express Oct-3/4, Biochem Biophys Res Commun., 2009, 388, 247–251

    Article  PubMed  CAS  Google Scholar 

  11. Lee S.H., Jeyapalan J.N., Appleby V., Mohamed Noor D.A., Sottile V., Scotting P.J., Dynamic methylation and expression of Oct4 in early neural stem cells, J. Anat., 2010, 217, 203–213

    Article  PubMed  CAS  Google Scholar 

  12. Noisa P., Ramasamy T.S., Lamont F.R., Yu J.S.L., Sheldon M.J., Russell A., et al., Identification and characterization of the early differentiating cells in neural differentiation of human embryonic stem cells, PLoS ONE, 2012, 7, 1–11

    Article  Google Scholar 

  13. Akamatsu W., DeVeale B., Okano H., Cooney A.J., van der Kooy D., Suppression of Oct4 by germ cell nuclear factor restricts pluripotency and promotes neural stem cell development in the early neural lineage, J. Neurosci., 2009, 29, 2113–2124

    Article  PubMed  CAS  Google Scholar 

  14. Lengner C.J., Camargo F.D., Hochedlinger K., Welstead G.G., Zaidi S., Gokhale S., et al., Oct4 expression is not required for mouse somatic stem cell self-renewal, Cell Stem Cell., 2007, 1, 403–415

    Article  PubMed  CAS  Google Scholar 

  15. Okuda T., Tagawa K., Qi M.L., Hoshio M., Ueda H., Kawano H., et al., Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo, Brain Res. Mol. Brain Res., 2004, 132, 18–30

    Article  PubMed  CAS  Google Scholar 

  16. Kozubenko N., Turnovcova K., Kapcalova M., Butenko O., Anderova M., Rusnakova V., et al., Analysis of in vitro and in vivo characteristics of human embryonic stem cell-derived neural precursors, Cell Transplant., 2010, 19, 471–486

    Article  PubMed  Google Scholar 

  17. Sundberg M., Andersson P.H., Åkesson E., Odeberg J., Holmberg L., Inzunza J., et al., Markers of pluripotency and differentiation in human neural precursor cells derived from embryonic stem cells and CNS tissue, Cell Transplant., 2011, 20, 177–191

    Article  PubMed  CAS  Google Scholar 

  18. Bain G., Kitchens D., Yao M., Huettner J.E., Gottlieb D.I., Embryonic stem cells express neuronal properties in vitro, Dev. Biol., 1995, 168, 342–357

    Article  PubMed  CAS  Google Scholar 

  19. Okabe S., Forsberg-Nilsson K., Spiro A.C., Segal M., McKay R.D., Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro, Mech Dev., 1996, 59, 89–102

    Article  PubMed  CAS  Google Scholar 

  20. Kawasaki H., Mizuseki K., Nishikawa S., Kaneko S., Kuwana Y., Nakanishi S., et al., Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity, Neuron., 2000, 28, 31–40

    Article  PubMed  CAS  Google Scholar 

  21. Tropepe V., Hitoshi S., Sirard C., Mak T.W., Rossant J., van der Kooy D., Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism, Neuron., 2001, 30, 65–78

    Article  PubMed  CAS  Google Scholar 

  22. Pruszak J., Sonntag K.C., Aung M.H., Sanchez-Pernaute R., Isacson O., Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations, Stem Cells., 2007, 25, 2257–2268

    Article  PubMed  Google Scholar 

  23. Okada Y., Matsumoto A., Shimazaki T., Enoki R., Koizumi A., Ishii S., et al., Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells, Stem Cells., 2008, 26, 3086–3098

    Article  PubMed  CAS  Google Scholar 

  24. Joannides A.J., Fiore-Hériché C., Battersby A.A., Athauda-Arachchi P., Bouhon I.A., Williams L., et al., A scaleable and defined system for generating neural stem cells from human embryonic stem cells, Stem Cells., 2007, 25, 731–737

    Article  PubMed  CAS  Google Scholar 

  25. Pastrana E., Silva-Vargas V., Doetsch F., Eyes wide open: a critical review of sphere-formation as an assay for stem cells, Cell Stem Cell., 2011, 8, 486–498

    Article  PubMed  CAS  Google Scholar 

  26. Cauffman G., Liebaers I., Van Steirteghem A., Van de Velde H., POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos, Stem Cells, 2006, 24, 2685–2691

    Article  PubMed  CAS  Google Scholar 

  27. Lee J., Kim H.K., Rho J.Y., Han Y.M., Kim J., The human OCT-4 isoforms differ in their ability to confer self-renewal, J. Biol. Chem., 2006, 281, 33554–33565

    Article  PubMed  CAS  Google Scholar 

  28. Zuk P.A., The intracellular distribution of the ES cell totipotent markers OCT4 and Sox2 in adult stem cells difers dramatically according to commercial antibody used, J. Cell. Biochem., 2009, 106, 867–877

    Article  PubMed  CAS  Google Scholar 

  29. Liedtke S, Stephan M., Kögler G., Oct4 expression revisited: potential pitfalls for data misinterpretation in stem cell research, Biol. Chem., 2008, 389, 845–850

    Article  PubMed  CAS  Google Scholar 

  30. Park J.A., Kim Y.E., Ha Y.H., Kwon H.J., Lee Y., High sensitivity of embryonic stem cells to proteasome inhibitors correlates with low expression heat shock protein and decrease of pluripotent cell marker expression, BMB Rep., 2012, 45, 299–304

    Article  PubMed  CAS  Google Scholar 

  31. Saxe J.P., Tomilin A., Schöler H.R., Plath K., Huang J., Post-translational regulation of Oct4 transcriptional activity, PLoS One, 2009, 4, 1–9

    Article  Google Scholar 

  32. Tay Y., Zhang J., Thomson A.M., Lim B., Rigoutsos I., MicroRNAs to Nanog, Oct4 and Sox2 coding region modulate embryonic stem cell differentiation, Nature, 2008, 455, 1124–1128

    Article  PubMed  CAS  Google Scholar 

  33. Kashyap V., Rezende N.C., Scotland K.B., Shaffer S.M., Persson J.L., Gudas L.J. et al., Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the Nanog, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs, Stem Cells and Develop., 2009, 7, 1093–1108

    Article  Google Scholar 

  34. Kallur T., Darsalia V., Lindvall O., Kokaia Z., Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differenziate extensively to neurons after intrastriatal transplantation in neonatal rats, J Neurosci Res., 2006, 84, 1630–1644

    Article  PubMed  CAS  Google Scholar 

  35. Gilyarov A.V., Nestin in central nervous system cells, Neurosci. Behav. Physiol., 2008, 38, 165–169

    Article  PubMed  CAS  Google Scholar 

  36. Pan G., Thomson J.A., Nanog and transcriptional networks in embryonic stem cell pluripotency, Cell Res., 2007, 17, 42–49

    Article  PubMed  CAS  Google Scholar 

  37. Wagner R.T., Cooney A.J., OCT4: less is more, Cell Res., 2009, 19, 527–528

    Article  PubMed  CAS  Google Scholar 

  38. Stefanovic S., Pucéat M., Oct-3/4: not just a gatekeeper of pluripotency for embryonic stem cell, a cell fate instructor through a gene dosage effect, Cell Cycle, 2007, 6, 8–10

    Article  PubMed  CAS  Google Scholar 

  39. Park D., Xiang A.P., Mao F.F., Zhang L., Di C.G., Liu X.M., et al., Nestin is required for the proper self-renewal of neural stem cells, Stem Cells, 2010, 28, 2162–2171

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Diana.

About this article

Cite this article

Massa, D., Pillai, R., Monni, E. et al. Expression analysis of pluripotency-associated genes in human fetal cortical and striatal neural stem cells during differentiation. Translat.Neurosci. 3, 242–248 (2012). https://doi.org/10.2478/s13380-012-0033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0033-x

Keywords

Navigation