Skip to main content
Log in

Roles of σ1 receptors in the mechanisms of action of CNS drugs

  • Mini-Review
  • Published:
Translational Neuroscience

Abstract

Accumulating evidence suggests that σ1 receptors play a role in the mechanisms of action of some therapeutic drugs, such as the selective serotonin reuptake inhibitors (SSRIs), donepezil, and ifenprodil. Among the SSRIs, fluvoxamine, a potent σ1 receptor agonist, has the highest affinity for σ1 receptors, while donepezil and ifenprodil also show high affinity for σ1 receptors. These drugs affect neuronal plasticity indicated by potentiation of nerve-growth factor (NGF)-induced neurite outgrowth in PC12 cells. Furthermore, phencyclidine (PCP)-induced cognitive impairment, associated with animal models of schizophrenia, is significantly improved by sub-chronic administration of fluvoxamine and donepezil. These pharmacological actions are antagonised by treatment with the selective σ1 receptor antagonist NE-100. Positron emission tomography (PET) with the σ1 specific ligand carbon-11-labelled 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine ([11C]SA4503) indicated that fluvoxamine and donepezil can bind to σ1 receptors in the healthy human brain in a dose-dependent manner. These findings suggest that σ1 receptors may be involved in the mechanisms of action of some therapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AChE:

acetylcholinesterase

AD:

Alzheimer’s disease

CNS:

central nervous system

EBP:

emopamil binding protein

ER:

endoplasmic reticulum

ifenprodil:

4-[2-(4-benzylpiperidin-1-yl)-1-hydroxypropyl]phenol

NE-100:

4-methoxy-3-(2-phenylethoxy)-N,N-dipropylbenzeneethanamine

NGF:

nerve growth factor

NMDA:

N-methyl-D-aspartate

PCP:

phencyclidine

PET:

positron emission tomography

PGRMC1:

progesterone receptor membrane component 1

SA4503:

1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine

SSRI:

selective serotonin reuptake inhibitor

V T :

total distribution volume

References

  1. Martin W.R., Eades C.G., Thompson J.A., Huppler R.E., Gilbert P.E., The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog, J. Pharmacol. Exp. Ther., 1976, 197, 517–532

    PubMed  CAS  Google Scholar 

  2. Bowen W.D., Hellewell S.B., McGarry K.A., Evidence for a multi-site model of the rat brain sigma receptor, Eur. J. Pharmacol., 1989, 163, 309–318

    Article  PubMed  CAS  Google Scholar 

  3. Hanner M., Moebius F.F., Flandorfer A., Knaus H.G., Striessnig J., Kempner E., et al., Purification, molecular cloning, and expression of the mammalian sigma1-binding site, Proc. Natl. Acad. Sci. USA, 1996, 93, 8072–8077

    Article  PubMed  CAS  Google Scholar 

  4. Hanner M., Moebius F.F., Weber F., Grabner M., Striessing J., Glossmann H., Phenylalkylamine Ca2+ antagonist binding protein. Molecular cloning, tissue distribution, and heterologous expression, J. Biol. Chem., 1995, 270, 7551–7557

    Article  PubMed  CAS  Google Scholar 

  5. Hayashi T., Su T.P., Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival, Cell, 2007, 131, 596–610

    Article  PubMed  CAS  Google Scholar 

  6. Xu J., Zheng C., Chu W., Pan F., Rothfuss J.M., Zhang F., et al., Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site, Nat. Commun., 2011, 2, 380

    Article  PubMed  Google Scholar 

  7. Su T.P., London E.D., Jaffe J,H., Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems, Science, 1988, 240, 219–221

    Article  PubMed  CAS  Google Scholar 

  8. Fontanilla D., Johannessen M., Hajipour A.R., Cozzi N.V., Jackson M.B., Ruoho A.E., The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator, Science, 2009, 323, 934–937

    Article  PubMed  CAS  Google Scholar 

  9. Hashimoto K., Ishiwata K., Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals, Curr. Pharm. Des., 2006, 12, 3857–3876

    Article  PubMed  CAS  Google Scholar 

  10. Hayashi T., Su T.P., Sigma-1 receptor ligands: potential in the treatment of neuropsychiatric disorders, CNS Drugs, 2004, 18, 269–284

    Article  PubMed  CAS  Google Scholar 

  11. Van Waarde A., Rebczynsk A.A., Ramakrishnan N., Ishiwata K., Elsinga P.H., Dierckx R.A., Sigma receptors in oncology: therapeutic and diagnostic applications of sigma ligands, Curr. Pharm. Des., 2010, 16, 3519–3537

    Article  PubMed  Google Scholar 

  12. Hayashi T., Su T.P., Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation, Proc. Natl. Acad. Sci. USA, 2004, 101, 14949–14954

    Article  PubMed  CAS  Google Scholar 

  13. Hayashi T., Su T.P., An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma1 receptor ligand, Expert. Opin. Ther. Targets, 2008, 12, 45–58

    Article  PubMed  CAS  Google Scholar 

  14. Takebayashi M., Hayashi T., Su T.P., A perspective on the new mechanism of antidepressants: neuritogenesis through sigma-1 receptors, Pharmacopsychiatry, 2004, 37(Suppl. 3), Σ208–Σ213

    Article  Google Scholar 

  15. Tsai S.Y., Hayashi T., Harvey B.K., Wang Y., Wu W.W., Shen R.F., et al., Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTO pathway, Proc. Natl. Acad. Sci. USA, 2009, 106, 22468–22473

    Article  PubMed  CAS  Google Scholar 

  16. Marrazzo A., Caraci F., Salinaro E.T., Su T.P., Copani A., Ronsisvalle G., Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity, Neuroreport, 2005, 16, 1223–1226

    Article  PubMed  CAS  Google Scholar 

  17. Maurice T., Lockhart B.P., Neuroprotective and anti-amnesic potentials of sigma receptor ligands, Prog. Neuropsychopharmacol. Biol. Psychiatry, 1997, 21, 69–102

    Article  PubMed  CAS  Google Scholar 

  18. Maurice T., Cognitive effects of sigma-receptor ligands, In: Sigma Receptors: Chemistry, Cell Biology and Clinical Implications (eds. Matsumoto R. R., Bowen W. D., Su T. P.), New York, Springer, 2007, 237–271

    Google Scholar 

  19. Van waarde A., Ramakrishnan N.K., Rybczynska A.A., Elsinga P.H., Ishiwata K., Nijholt I.M., et al., The cholinergic system, sigma-1 receptors and cognition, Behav. Brain Res., 2011, 221, 543–554

    Article  PubMed  Google Scholar 

  20. Carrasco J.L., Sandner C., Clinical effects of pharmacological variations in selective serotonin reuptake inhibitors: an overview, Int. J. Clin. Pract., 2005, 59, 1428–1434

    Article  PubMed  CAS  Google Scholar 

  21. Narita N., Hashimoto K., Tomitaka S., Minabe Y., Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain, Eur. J. Pharmacol., 1996, 307, 117–119

    Article  PubMed  CAS  Google Scholar 

  22. Nishimura T., Ishima T., Iyo M., Hashimoto K., Potentiation of nerve growth factor-induced neurite outgrowth by fluvoxamine: role of sigma-1 receptors, IP3 receptors and cellular signaling pathways, PLoS One, 2008, 3, e2558

    Article  PubMed  Google Scholar 

  23. Hashimoto K., Fujita Y., Iyo M., Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of fluvoxamine: role of sigma-1 receptors, Neuropsychopharmacology, 2007, 32, 514–521

    Article  PubMed  CAS  Google Scholar 

  24. Iyo M., Shirayama Y., Watanabe H., Fujisaki M., Miyatake R., Fukami G., et al., Fluvoxamine as a sigma-1 receptor agonist improved cognitive impairments in a patient with schizophrenia, Prog. Neuropsychopharmacol, Biol. Psychiatry, 2008, 32, 1072–1073

    Article  CAS  Google Scholar 

  25. Kato K., Hayako H., Ishihara Y., Marui S., Iwaqne M., Miyamoto M., TAK-147, an acetylcholinesterase inhibitor, increases choline acetyltransferase activity in cultured rat septal cholinergic neurons, Neurosci. Lett., 1999, 260, 5–8

    Article  PubMed  CAS  Google Scholar 

  26. Ishima T., Nishimura T., Iyo M., Hashimoto K., Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by donepezil: role of sigma-1 receptors and IP3 receptors, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32, 1656–1659

    Article  PubMed  CAS  Google Scholar 

  27. Oda T., Kume T., Katsuki H., Niidome T., Sugimoto H., Akaike A., Donepezil potentiates nerve growth factor-induced neurite outgrowth in PC12 cells, J. Pharmacol. Sci., 2007, 104, 349–354

    Article  PubMed  CAS  Google Scholar 

  28. Meunier J., Inei J., Maurice T., The anti-amnesic and neuroprotective effects of donepezil against amyloid b25-35 peptide-induced toxicity in mice involve an interaction with σ1 receptor, Br. J. Pharmacol., 2006, 149, 998–1012

    Article  PubMed  CAS  Google Scholar 

  29. Kunitachi S., Fujita Y., Ishima T., Kohno M., Horio M., Tanibuchi Y., et al., Phencyclidine-induced cognitive deficits in mice are ameliorated by subsequent subchronic administration of donepezil: role of sigma-1 receptors, Brain Res., 2009, 1279, 189–196

    Article  PubMed  CAS  Google Scholar 

  30. Hashimoto K., London E.D., Further characterization of [3H]ifenprodil binding to sigma receptors in rat brain, Eur. J. Pharmacol., 1993, 236, 159–163

    Article  PubMed  CAS  Google Scholar 

  31. Hashimoto K., Mantione C.R., Spada M.R., Neumeyer J.L., London E.D., Further characterization of [3H]ifenprodil binding in rat brain, Eur. J. Pharmacol., 1994, 266, 67–77

    Article  PubMed  CAS  Google Scholar 

  32. Hashimoto K., London E.D., Interactions of erythro-ifenprodil, threoifenprodil, erythro-iodoifenprodil, and eliprodil with subtypes of sigma receptors, Eur. J. Pharmacol., 1995, 273, 307–310

    Article  PubMed  CAS  Google Scholar 

  33. Ishima T., Hashimoto K., Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: The role of sigma-1 and IP3 receptors, PLoS One, 2012, 7, e37989

    Article  PubMed  CAS  Google Scholar 

  34. Demerens C., Stankoff B., Zalc B., Lubetzki C., Eliprodil stimulate CNS myelination: new prospects for multiple sclerosis? Neurology, 1999, 52, 346–350

    Article  PubMed  CAS  Google Scholar 

  35. Kishimoto A., Kaneko M., Gotoh Y., Hashimoto K., Ifenprodil for treatment of flashbacks in female posttraumatic stress disorder patients with a history of childhood sexual abuse, Biol. Psychiatry, 2012, 71, e7–e8

    Article  PubMed  Google Scholar 

  36. Waarde A., Measuring receptor occupancy with PET, Curr. Pharm. Des., 2000, 6, 1593–1610

    Article  PubMed  CAS  Google Scholar 

  37. Toyohara J., Sakata M., Ishiwata K., Imaging of sigma1 receptors in the human brain using PET and [11C]SA4503, Cent. Nerv. Syst. Agents Med. Chem., 2009, 9, 190–196

    PubMed  CAS  Google Scholar 

  38. Ishikawa M., Ishiwata K., Ishii K., Kimura Y., Sakata M., Naganawa M., et al., High occupancy of sigma-1 receptors in the human brain after single oral administration of fluvoxamine: a positron emission tomography study using [11C]SA4503, Biol. Psychiatry, 2007, 62, 878–883

    Article  PubMed  CAS  Google Scholar 

  39. Suhara T., Takano A., Sudo Y., Ichimiya T., Inoue M., Yasuno F., et al., High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography, Arch. Gen. Psychiatry, 2003, 60, 386–391

    Article  PubMed  CAS  Google Scholar 

  40. Ishikawa M., Sakata M., Ishii K., Kimura Y., Oda K., Toyohara J., et al., High occupancy of sigma1 receptors in the human brain after single oral administration of donepezil: a positron emission tomography study using [11C]SA4503, Int. J. Neurpsychopharmacol., 2009, 12, 1127–1131

    Article  CAS  Google Scholar 

  41. Bohnen N.I., Kaufer D.I., Hendrickson R., Ivanco L.S., Lopresti B.J., Koeppe R.A., et al., Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry, 2005, 76, 315–319

    Article  PubMed  CAS  Google Scholar 

  42. Kaasinen V., Någren K., Järvenpää T., Roivainen A., Yu M., Oikonen V., et al., Regional effects of donepezil and rivastigmine on cortical acetylcholinesterase activity in Alzheimer’s disease, J. Clin. Psychopharmacol., 2002, 22, 615–620

    Article  PubMed  CAS  Google Scholar 

  43. Shinotoh H., Aotsuka A., Fukushi K., Nagatsuka S., Tanaka N., Ota T., et al., Effect of donepezil on brain acetylcholinesterase activity in patients with AD measured by PET, Neurology, 2001, 13, 408–410

    Article  Google Scholar 

  44. Toyohara J., Sakata M., Ishiwata K., Re-evaluation of in vivo selectivity of [11C]SA4503 to σ1 receptors in the brain: contributions of emopamil binding protein, Nucl. Med. Biol., 2012, [Epub ahead of print]

  45. Maurice T., Su T.P., The pharmacology of sigma-1 receptors, Pharmacol. Ther., 2009, 124, 195–206

    Article  PubMed  CAS  Google Scholar 

  46. Kulkarni S.A., Dhir A., Sigma-1 receptors in major depression and anxiety, Expert. Rev. Neurother., 2009, 9, 1021–1034

    Article  PubMed  CAS  Google Scholar 

  47. Fishback J.A., Robson M.J., Xu Y.T., Matsumoto R.R., Sigma receptors: potential targets for a new class of antidepressant drug, Pharmacol. Ther., 2010, 127, 271–282

    Article  PubMed  CAS  Google Scholar 

  48. Walker J.M., Bowen W.D., Walker F.O., Matsumoto R.R., De Costa B., Rice K.C., Sigma receptors: biology and function, Pharmacol. Rev., 1990, 42, 355–402

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Toyohara.

About this article

Cite this article

Toyohara, J., Sakata, M. & Ishiwata, K. Roles of σ1 receptors in the mechanisms of action of CNS drugs. Translat.Neurosci. 3, 294–299 (2012). https://doi.org/10.2478/s13380-012-0030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0030-0

Keywords

Navigation