Skip to main content
Log in

Pattern classification predicts individuals’ responses to affective stimuli

  • Research Article
  • Published:
Translational Neuroscience

Abstract

Since the successful demonstration of “brain reading” of fMRI BOLD signals using multivoxel pattern classification (MVPA) techniques, the neuroimaging community has made vigorous attempts to exploit the technique in order to identify the signature patterns of brain activities associated with different cognitive processes or mental states. In the current study, we tested whether the valence and arousal dimensions of the affective information could be used to successfully predict individual’s active affective states. Using a whole-brain MVPA approach, together with feature elimination procedures, we are able to discriminate between brain activation patterns associated with the processing of positive or negative valence and cross validate the discriminant function with an independent data set. Arousal information, on the other hand, failed to provide such discriminating power. With an independent sample, we test further whether the MVPA identified brain network could be used for inter-individual classification. Although the inter-subject classification success was only marginal, we found correlations with individual differences in affective processing. We discuss the implications of our findings for future attempts to classify patients based on their responses to affective stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox D. D., Savoy R. L., Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex, Neuroimage, 2003, 19, 261–270

    Article  PubMed  Google Scholar 

  2. Haynes J. D., Rees G., Decoding mental states from brain activity in humans, Nat. Rev. Neurosci., 2006, 7, 523–534

    Article  PubMed  CAS  Google Scholar 

  3. Haxby J. V., Gobbini M. I., Furey M. L., Ishai A., Schouten J. L., Pietrini P., Distributed and overlapping and representations of faces and objects in ventral temporal cortex, Science, 2001, 293, 2425–2430

    Article  PubMed  CAS  Google Scholar 

  4. Kamitani Y., Tong F., Decoding the visual and subjective contents of the human brain, Nat. Neurosci., 2005, 8, 679–685

    Article  PubMed  CAS  Google Scholar 

  5. Shinkareva S. V., Mason R. A., Malave V. L., Wang W., Mitchell T. M., Just M. A., Using fMRI brain activation to identify cognitive states associated with perception of tools and dwellings, PLoS One, 2008, 3: e1394

    Article  PubMed  Google Scholar 

  6. Lewis-Peacock J. A., Postle B. R., Temporary activation of long-term memory supports short-term memory, J. Neurosci., 2008, 28, 8765–8771

    Article  PubMed  CAS  Google Scholar 

  7. Hampton A. N., O’Doherty J. P., Decoding the neural substrates of reward-related decision making with functional MRI, Proc. Natl. Acad. Sci. USA, 2007, 104, 1377–1382

    Article  PubMed  CAS  Google Scholar 

  8. Soon C. S., Brass M., Heinze H. J., Haynes J. D., Unconscious determinants of free decisions in the human brain, Nat. Neurosci., 2008, 11, 543–545

    CAS  Google Scholar 

  9. Fung G., Stoeckel J., SVM feature selection for classification of SPECT of Alzheimer’s disease using spatial information, Knowl. Inf. Syst., 2007, 11, 243–258

    Article  Google Scholar 

  10. Gerardin E., Chételat G., Chupin M., Cuingnet R., Desgranges B., Kim H. S., et al., Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging, Neuroimage, 2009, 47, 1476–1486

    Article  PubMed  Google Scholar 

  11. Koutsouleris N., Meisenzahl E. M., Davatyikos C., Bottlender R., Frodl T., Scheuerecker J., et al., Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition, Arch. Gen. Psychiatry, 2009, 66, 700–712

    Article  PubMed  Google Scholar 

  12. Hahn T., Marquand A. F., Ehlis A., Dresler T., Kittel-Schneider S., Jarczok T. A., et al., Integrating neurobiological markers of depression, Arch. Gen. Psychiatry, 2010, 68, 361–368

    Article  PubMed  Google Scholar 

  13. Pessoa L., Padmala S., Decoding near-threshold perception of fear from distributed single-trial brain activation, Cereb. Cortex, 2007, 17, 691–701

    Article  PubMed  Google Scholar 

  14. Rolls E. T., Grabenhorst F., Franco L., Prediction of subjective affective state from brain activations, J. Neurophysiol., 2009, 101, 1294–1308

    Article  PubMed  Google Scholar 

  15. Ethofer T., De Ville D. V., Scherer K., Vuilleumier P., Decoding of emotional information in voice-sensitive cortices, Curr. Biol., 2009, 19, 1028–1033

    Article  PubMed  CAS  Google Scholar 

  16. Sitaram R., Lee S., Ruiz S., Rana M., Veit R., Birbaumer N., Real-time support vector classification and feedback of multiple emotional brain states, Neuroimage, 2010, 56, 753–765

    Article  PubMed  Google Scholar 

  17. Peelen M. V., Atkinson A. P., Vuilleumier P., Supramodel representations of perceived emotions in the human brain. J. Neurosci., 2010, 30, 10127–10134

    Article  PubMed  CAS  Google Scholar 

  18. Lang P. J., Bradley M. M., Cuthbert B. N., International affective picture system (IAPS): Affective ratings of pictures and instruction manual, Technical Report A-8, University of Florida, Gainesville, FL, 2008

    Google Scholar 

  19. Alorda C., Serrano-Pedraza I., Campos-Bueno J. J., Sierra-Vazquez V., Montoya P., Low spatial frequency filtering modulates early brain processing of affective complex pictures, Neuropsychologia, 2007, 45, 3223–3233

    Article  PubMed  Google Scholar 

  20. Delplanque S., N’diaye K., Scherer K., Grandjean D., Spatial frequencies or emotional effects? A systematic measure of spatial frequencies for IAPS pictures by a discrete wavelet analysis, J. Neurosci. Methods, 2007, 165, 144–150

    Article  PubMed  Google Scholar 

  21. Kriegeskorte N., Simmons W., Bellgowan P., Baker C., Circular analysis in systems neuroscience: the dangers of double dipping, Nat. Neurosci., 2009, 12, 535–540

    Article  PubMed  CAS  Google Scholar 

  22. Vul E., Harris C., Winkielman P., Pashler H., Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition, Perspect. Psychol. Sci., 2009, 4, 274–291

    Article  Google Scholar 

  23. Mak A. K. Y., Hu Z. G., Zhang J. X. X., Xiao Z., Lee T. M. C., Sexrelated differences in neural activity during emotion regulation, Neuropsychologia, 2009, 47, 2900–2908

    Article  PubMed  Google Scholar 

  24. Talairach J., Tournoux P., Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging, Stuttgart, Thieme Medical Publishers, 1988

    Google Scholar 

  25. Boynton G. M., Engel S. A., Glover G. H., Heeger D. J., Linear systems analysis of functional magnetic resonance imaging in human V1, J. Neurosci., 1996, 16, 4207–4221

    PubMed  CAS  Google Scholar 

  26. De Martino F., Valente G., Staeren N., Ashburner J., Goebel R., Formisano E., Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns, Neuroimage, 2008, 43, 44–58

    Article  PubMed  Google Scholar 

  27. Formisano E., De Martino F., Bonte M., Goebel R., “Who” is saying “What”? Brain-based decoding of human voice and speech, Science, 2008, 322, 970–973

    Article  PubMed  CAS  Google Scholar 

  28. Staeren N., Renvall H., De Martino F., Goebel R., Formisano E., Sound categories are represented as distributed patterns in the human auditory cortex, Curr. Biol., 2009, 19, 498–502

    Article  PubMed  CAS  Google Scholar 

  29. Adolphs R., Neural systems for recognizing emotion, Curr. Opin. Neurobiol., 2002, 12, 169–177

    Article  PubMed  CAS  Google Scholar 

  30. Phillips M. L., Drevets W. C., Rauch S. L., Land R., Neurobiology of emotion perception I: the neural basis of normal emotion perception, Biol. Psychiatry, 2003, 54, 504–514

    Article  PubMed  Google Scholar 

  31. Ihssen N., Cox W. M., Wiggett A., Fadardi J. S., Linden D. E., Differentiating heavy from light drinkers by neural responses to visual alcohol cues and other motivational stimuli, Cereb. Cortex, 2011, 21, 1408–1415

    Article  PubMed  Google Scholar 

  32. Mourão-Miranda J., Oliveira L., Ladouceur C. D., Marquand A., Brammer M., Birmaher B., et al., Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents, PLoS One 2012, 7: e29482

    Article  PubMed  Google Scholar 

References

  1. Adolphs R., Neural systems for recognizing emotion, Curr. Opin. Neurobiol., 2002, 12, 169–177

    Article  PubMed  CAS  Google Scholar 

  2. Phillips M. L., Drevets W. C., Rauch S. L., Land R., Neurobiology of emotion perception I: the neural basis of normal emotion perception, Biol. Psychiatry, 2003, 54, 504–514

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. L. Yuen.

About this article

Cite this article

Yuen, K.S.L., Johnston, S.J., De Martino, F. et al. Pattern classification predicts individuals’ responses to affective stimuli. Translat.Neurosci. 3, 278–287 (2012). https://doi.org/10.2478/s13380-012-0029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0029-6

Keywords

Navigation