Skip to main content
Log in

Osteopontin: A key link between immunity, inflammation and the central nervous system

  • Mini-Review
  • Published:
Translational Neuroscience

Abstract

Osteopontin (OPN) is a pro-inflammatory cytokine that can be secreted from many cells including activated macrophages and T-lymphocytes. Elevated levels of osteopontin in the plasma, cerebrospinal fluid or brain of individuals with neurodegenerative diseases such as multiple sclerosis (MS), Parkinson’s and Alzheimer’s disease and more recently in HIV-associated neurocognitive disorder has been reported. However, except for the case of MS, little is known regarding the molecular mechanisms by which OPN may exacerbate disease. Alternatively, OPN through its ability to promote cell survival may in some contexts function in the brain in a protective capacity. OPN has several protein motifs that allow it to engage with several different signaling pathways involved in immunity and inflammation. A better understanding of the cellular pathways that are regulated by OPN in cells of the central nervous system is required to uncover its putative role in neuronal homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jansson M., Panoutsakopoulou V., Baker J., Klein L., Cantor H., Cutting edge: Attenuated experimental autoimmune enchephalomyelitis in eta-1/osteopontin-deficient mice, J. Immunol., 2002, 168, 2096–2099

    PubMed  CAS  Google Scholar 

  2. Hur E. M., Youssef S., Haws M. E., Zhang S. Y., Sobel R. A., Steinman L., Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells, Nat. Immunol., 2006, 8, 74–83

    Article  PubMed  Google Scholar 

  3. Wung J. K., Perry G., Kowalski A., Harris P. L., Bishop G. M., Trivedi M. A., et al., Increased expression of the remodeling- and tumorigenic-associated factor osteopontin in pyramidal neurons of the Alzheimer’s disease brain, Curr. Alzheimer Res., 2007, 4, 67–72

    Article  PubMed  CAS  Google Scholar 

  4. Wirths O., Breyhan H., Marcello A., Cotel M. C., Brück W., Bayer T. A., Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer’s disease, Neurobiol. Aging, 2010, 31, 747–757

    Article  PubMed  CAS  Google Scholar 

  5. Comi C., Carecchio M., Chiocchetti A., Nicola S., Galimberti D., Fenoglio C., et al., Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer’s disease and its levels correlate with cognitive decline, J. Alzheimers Dis., 2010, 19, 1143–1148

    PubMed  CAS  Google Scholar 

  6. Maetzler W., Berg D., Schalamberidze N., Melms A., Schott K., Mueller J. C., et al., Osteopontin is elevated in Parkinson’s disease and its absence leads to reduced neurodegeneration in the MPTP model, Neurobiol. Dis., 2007, 25, 473–482

    Article  PubMed  CAS  Google Scholar 

  7. Iczkiewicz J., Jackson M. J., Smith L. A., Rose S., Jenner P., Osteopontin expression in substantia nigra in MPTP-treated primates and in Parkinson’s disease, Brain Res., 2006, 1118, 239–250

    Article  PubMed  CAS  Google Scholar 

  8. Mattson N., Rüetschi U, Pijnenburg Y. A., Blankenstein M. A., Podust V. N., Li S., et al., Novel cerebrospinal fluid biomarkers of axonal degeneration in frontotemporal dementia, Mol. Med. Report, 2008, 1, 757–761

    Google Scholar 

  9. Brown A., Islam T., Adams R., Nerle S., Kamara M., Eger C., et al., Osteopontin enhances HIV replication and is increased in the brain and cerebrospinal fluid of HIV-infected individuals, J. Neurovirol., 2011, 17, 382–392

    Article  PubMed  CAS  Google Scholar 

  10. McArthur J. C., Steiner J., Sacktor N., Nath A., Human immunodeficiency virus-associated neurocognitive disorders: Mind the gap, Ann. Neurol., 2010, 67, 699–714

    Article  PubMed  CAS  Google Scholar 

  11. Navia B. A., Jordan B. D., Price R. W., The AIDS dementia complex: I. Clinical features, Ann. Neurol., 1986, 19, 517–524

    Article  PubMed  CAS  Google Scholar 

  12. Heaton R. K., Franklin D. R., Ellis R. J., McCutchan J. A., Letendre S. L., et al., HIV-associated neurocognitive disorder before and during the era of combination antiretroviral therapy: differences in rates, nature and predictors, J. Neurovirol., 2011, 17, 3–16

    Article  PubMed  CAS  Google Scholar 

  13. Heaton R. K., Clifford D. B., Franklin D. R. Jr., Woods S. P., Ake C., Vaida F., et al., HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study, Neurology, 2010, 75, 2087–2096

    Article  PubMed  Google Scholar 

  14. Antinori A., Arendt G., Becker J. T., Brew B. J., Byrd D. A., Cherner M., et al., Updated research nosology for HIV-associated neurocognitive disorders, Neurology, 2007, 69, 1789–1799

    Article  PubMed  CAS  Google Scholar 

  15. Kraft-Terry S. D., Stothert A. R., Buch S., Gendelman H. E., HIV-1 neuroimmunity in the era of antiretroviral therapy, Neurobiol. Dis., 2010, 37, 542–548

    Article  PubMed  CAS  Google Scholar 

  16. Burdo T. H., Wood M. R., Fox H. S., Osteopontin prevents monocyte recirculation and apoptosis, J. Leukoc. Biol., 2007, 81, 1504–1511

    Article  PubMed  CAS  Google Scholar 

  17. Marcondes M. C., Lanigan C. M., Burdo T. H., Watry D. D., Fox H. S., Increased expression of monocyte CD44v6 correlates with the development of encephalitis in rhesus macaques infected with simian immunodeficiency virus, J. Infect. Dis., 2008, 197, 1567–1576

    Article  PubMed  Google Scholar 

  18. Burdo T. H., Ellis R. J., Fox H. S., Osteopontin is increased in HIV-associated dementia, J. Infect. Dis., 2008, 198, 715–722

    Article  PubMed  CAS  Google Scholar 

  19. Brown A., Gartner S., Kawano T., Benoit N., Cheng-Mayer C., HLA-A2 down-regulation on primary human macrophages infected with an M-tropic EGFP-tagged HIV-1 reporter virus, J. Leukoc. Biol., 2005, 78, 675–685

    Article  PubMed  CAS  Google Scholar 

  20. Brown A., Zhang H., Lopez P., Pardo C. A., Gartner S., In vitro modeling of the HIV-macrophage reservoir, J. Leukoc. Biol., 2006, 80, 1127–1135

    Article  PubMed  CAS  Google Scholar 

  21. Ziegler-Heitbrock H. W. L., Fingerle G., Ströbel M., Schraut W., Stelter F., Schütt C., et al., The novel subset of CD14+ CD16+ blood monocytes exhibits features of tissue macrophages, Eur. J. Immunol., 1993, 23, 2053–2058

    Article  PubMed  CAS  Google Scholar 

  22. Marder K., Albert S. M., McDermott M. P., McArthur J. C., Schifitto G., Selnes O. A., et al., Inter-rater reliability of a clinical staging of HIV-associated cognitive impairment, Neurology, 2003, 60, 1467–1473

    Article  PubMed  CAS  Google Scholar 

  23. Sacktor N., McDermott M. P., Marder K., Schifitto G., Selnes O. A., McArthur J. C., et al., HIV-associated cognitive impairment before and after the advent of combination therapy, J. Neurovirol., 2002, 8, 136–142

    Article  PubMed  Google Scholar 

  24. Anborgh P. H., Wilson S. M., Tuck A. B., Winquist E., Schmidt N., Hart R., et al., New dual monoclonal ELISA for measuring plasma osteopontin as a biomarker associated with survival in prostate cancer: clinical validation and comparison of multiple ELISAs, Clin. Chem., 2009, 55, 895–903

    Article  PubMed  CAS  Google Scholar 

  25. Letendre S., Marquie-Beck J., Capparelli E., Best B., Clifford D., Collier A. C., et al., Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system, Arch. Neurol., 2008, 65, 65–70

    Article  PubMed  Google Scholar 

  26. Lampe M. A., Patarca R., Iregui M. V., Cantor H., Polyclonal B cell ativation by the Eta-1 cytokine and the development of systemic autoimmune disease, J. Immunol., 1991, 147, 2902–2906

    PubMed  CAS  Google Scholar 

  27. Saito Y., Kon S., Fujiwara Y., Nakayama Y., Kurotaki D., Fukuda N., et al., Osteopontin small interfering RNA protects mice from fulminant hepatitis, Hum. Gene Ther., 2007, 18, 1205–1214

    Article  PubMed  CAS  Google Scholar 

  28. Rollo E. E., Hempson S. J., Bansal A., Tsao E., Habib J., Rittling S. R., et al., The cytokine osteopontin modulates the severity of rotavirus diarrhea, J. Virol., 2005, 79, 3509–3516

    Article  PubMed  CAS  Google Scholar 

  29. Patarca R., Saavedra R. A., Cantor H., Molecular and cellular basis of genetic resistance to bacterial infection: the role of the early T-lymphocyte activation-1/osteopontin gene, Crit. Rev. Immunol., 1993, 13, 225–246

    PubMed  CAS  Google Scholar 

  30. Nau G. J., Liaw L., Chupp G. L., Berman J. S., Hogan B. L., Young R. A., Attenuated host resistance against Mycobacterium bovis BCG infection in mice lacking osteopontin, Infect. Immun., 1999, 67, 4223–4230

    PubMed  CAS  Google Scholar 

  31. Weber G. F., Ashkar S., Glimcher M. J., Cantor H., Receptor-ligand interaction between CD44 and osteopontin/Eta-1, Science, 1996, 271, 509–512

    Article  PubMed  CAS  Google Scholar 

  32. Patarca R., Freeman G. J., Singh R. P., Wei F. Y., Durfee T., Blattner F., et al., Structural and functional studies of the early T-lymphocyte activation 1 (Eta-1) gene, J. Exp. Med., 1989, 170, 145–161

    Article  PubMed  CAS  Google Scholar 

  33. Ashkar S., Weber G. F., Panoutsakopoulou V., Sanchirico M. E., Jannson M., Zawaideh S., et al., Eta-1 (Osteopontin): An early component of type-1 (cell-mediated) immunity, Science, 2000, 287, 860–864

    Article  PubMed  CAS  Google Scholar 

  34. Wang K. X., Denhardt D. T., Osteopontin: Role in immune regulation and stress responses, Cytokine Growth Factor Rev., 2008, 19, 333–345

    Article  PubMed  CAS  Google Scholar 

  35. Shinohara M. L., Lu L., Bu J., Werneck M. B., Kobayashi K. S., Glimcher L. H., et al., Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells, Nat. Immunol., 2006, 7, 498–506

    Article  PubMed  CAS  Google Scholar 

  36. Morimoto J., Sato K., Nakayama Y., Kimura C., Kajino K., Matsui Y., et al., Osteopontin modulates the generation of memory CD8+ T cells during influenza virus infection, J. Immunol., 2011, 187, 5671–5683

    Article  PubMed  CAS  Google Scholar 

  37. Chabas D., Baranzini S. E., Mitchell D., Bernard C. C., Rittling S. R., Denhardt D. T., et al., The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease, Science, 2001, 294, 1731–1735

    Article  PubMed  CAS  Google Scholar 

  38. Lock C., Hermans G., Pedotti R., Brendolan A., Schadt E., Garren H., et al., Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis, Nat. Med., 2002, 8, 500–508

    Article  PubMed  CAS  Google Scholar 

  39. Vogt M. H., Floris S., Killestein J., Knol D. L., Smits M., Barkhof F., et al., Osteopontin levels and increased disease activity in relapsing remitting multiple sclerosis patients, J. Neuroimmunol., 2004, 155, 155–160

    Article  PubMed  CAS  Google Scholar 

  40. Comabella M., Pericot I., Goertsches R., Nos C., Castillo M., Blas Navarro J., et al., Plasma osteopontin levels in multiple sclerosis, J. Neuroimmunol., 2005, 158, 231–239

    Article  PubMed  CAS  Google Scholar 

  41. Braitch M., Nunan R., Niepel G., Edwards L. J., Constantinescu C. S., Increased osteopontin levels in the cerebrospinal fluid of patients with multiple sclerosis, Arch. Neurol., 2008, 65, 633–635

    Article  PubMed  Google Scholar 

  42. Tiberti N., Hainard A., Lejon V., Robin X., Ngoyi D. M., Turck N., et al., Discovery and verification of osteopontin and Beta-2-microglobulin as promising markers for staging human African trypanosomiasis, Mol. Cell. Proteomics, 2010, 9, 2783–2795

    Article  PubMed  CAS  Google Scholar 

  43. Sodek J., Ganss B., McKeee M. D., Osteopontin, Crit. Rev. Oral Biol. Med., 2000, 11, 279–303

    Article  PubMed  CAS  Google Scholar 

  44. Denhardt, D. T., Guo X, Osteopontin: A protein with diverse functions, FASEB J., 1993, 7, 1475–1482

    PubMed  CAS  Google Scholar 

  45. Bellahcène A., Castronovo V., Ogbureke K. U., Fisher L. W., Fedarko N. S., Small integrin-binding ligand N-liked glycoproteins (SIBLINGs): multifunctional proteins in cancer, Nat. Rev. Cancer, 2008, 8, 212–226

    Article  PubMed  Google Scholar 

  46. Kazanecki C. C., Uzwiak D. J., Denhardt D. T., Control of osteopontin signaling and function by post-translational phosphorylation and protein folding, J. Cell. Biochem., 2007, 102, 912–924

    Article  PubMed  CAS  Google Scholar 

  47. Ransohoff R. M., Cardona A. E., The myeloid cells of the central nervous system parenchyma, Nature, 2010, 468, 253–262

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki K., Takeyama S., Sakai Y., Yamada S., Shinoda H., Current topics in pharmacological research on bone metabolism: inhibitory effects of bisphosphonates on the differentiation and activity of osteoclasts, J. Pharmacol. Sci., 2006, 100, 189–194

    Article  PubMed  CAS  Google Scholar 

  49. Ofotokun I., Weitzmann M. N., HIV and bone metabolism, Discovery Med., 2011, 11, 385–393

    Google Scholar 

  50. Ofotokun I., Weitzmann M. N., HIV: inflammation and bone, Curr. HIV/AIDS Rep., 2012, 9, 16–25

    Article  PubMed  Google Scholar 

  51. Clowes J., Riggs B. L., Khosia S., The role of immune system in the pathophysiology of osteoporosis, Immunol. Rev., 2005, 208, 207–227

    Article  PubMed  CAS  Google Scholar 

  52. Pirraco R. P., Reis R. L., Marques A. P., Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs, J. Tissue Eng. Regen. Med., 2012, doi: 10.1002/term.535 [Epub ahead of print]

  53. Brown T. T., Ross A. C., Storer N., Labbato D., McComsey G. A., Bone turnover, osteoprotegerin/RANKL and inflammation with antiretroviral initiation: tenofovir versus non-tenofovir regimens, Antivir. Ther., 2011, 16, 1063–1072

    Article  PubMed  CAS  Google Scholar 

  54. Vikulina T., Fan X., Yamaguchi M., Roser-Page S., Zayzafoon M., Guidot D. M., et al., Alterations in the immuno-skeletal interface drive bone distruction in HIV-1 transgenic rats, Proc. Natl. Acad. Sci. USA, 2010, 107, 13848–13853

    Article  PubMed  CAS  Google Scholar 

  55. Haskelberg H., Carr A., Emery S., Bone turnover markers in HIV disease, AIDS Rev., 2011, 13, 240–250

    PubMed  Google Scholar 

  56. Walker Harris B., Brown T. T., Bone loss in the HIV-infected patient: evidence, clinical implications, and treatment strategies, J. Infect. Dis., 2012, 205(Suppl. 3), S391–398

    Article  PubMed  CAS  Google Scholar 

  57. Coiras M., López-Huertas M. R., Sánchez del Cojo M., Mateos E., Alcamí J., Dual role of host cell factors in HIV-1 replication: restriction and enhancement of the viral cycle, AIDS Rev., 2010, 12, 103–112

    PubMed  Google Scholar 

  58. Shin S. L., Cha J. H., Chun M. H., Chung J. W., Lee M. Y., Expression of osteopontin mRNA in the adult rat brain, Neurosci. Lett., 1999, 273, 73–76

    Article  PubMed  CAS  Google Scholar 

  59. Ichikawa H., Itota T., Nishitani Y., Torii Y., Inoue K., Sugimoto T., Osteopontin-immunoreactive primary sensory neurons in the rat spinal and trigeminal nervous systems, Brain Res., 2000, 863, 276–281

    Article  PubMed  CAS  Google Scholar 

  60. Glezer I., Bittencourt J. C., Rivest S., Neuronal expression of Cd36, Cd44, and Cd83 antigen transcripts maps to distinct and specific murine brain circuits, J. Comp. Neurol., 2009, 517, 906–924

    Article  PubMed  Google Scholar 

  61. Mark M. P., Prince C. W., Gay S., Austin R. L., Butler W. T., 44-kDal bone phosphoprotein (osteopontin) antigenicity at ectopic sites in newborn rats: kidney and nervous tissues, Cell Tissue Res., 1988, 251, 23–30

    Article  PubMed  CAS  Google Scholar 

  62. van Velthoven C. T., Heijnen C. J., van Bel F., Kavelaars A., Osteopontin enhances endogenous repair after neonatal hypoxic-ischemic brain injury, Stroke, 2011, 42, 2294–2301

    Article  PubMed  Google Scholar 

  63. Morinobu M., Ishijima M., Rittling S. R., Tsuji K., Yamamoto H., Nifuji A., et al., Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo, J. Bone Miner. Res., 2003, 18, 1706–1715

    Article  PubMed  CAS  Google Scholar 

  64. McKee M. D., Addison W. N., Kaartinen M. T., Hierarchies of extracellular matrix and mineral organization in bone of the craniofacial complex and skeleton, Cells Tissues Organs, 2005, 181, 176–188

    Article  PubMed  CAS  Google Scholar 

  65. Iseki S., Wilkie A. O., Heath J. K., Ishimaru T., Eto K., Morriss-Kay G. M., Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2, Development, 1997, 124, 3375–3384

    PubMed  CAS  Google Scholar 

  66. Hazenberg M. D., Stuart J. W., Otto S. A., Borleffs J. C., Boucher C. A., de Boer R. J., et al., T-cell division in human immunodeficiency virus (HIV-1) infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART), Blood, 2000, 95, 249–255

    PubMed  CAS  Google Scholar 

  67. Connoly N., Riffler S., Rinaldo C., Proinflammatory cytokines in HIV disease — a review and rationale for new therapeutic approaches, AIDS Rev., 2005, 7, 168–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Brown.

About this article

Cite this article

Brown, A. Osteopontin: A key link between immunity, inflammation and the central nervous system. Translat.Neurosci. 3, 288–293 (2012). https://doi.org/10.2478/s13380-012-0028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0028-7

Keywords

Navigation