Skip to main content
Log in

Epigenetic epidemiology in psychiatry: A translational neuroscience perspective

  • Review Article
  • Published:
Translational Neuroscience

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Accumulating evidence from the field of neuroscience indicates a crucial role for epigenetic regulation of gene expression in development and aging of nervous system and suggests that aberrations in the epigenetic machinery are involved in the etiology of psychiatric disorders. Epidemiologic evidence on epigenetics in psychiatry, however, is currently very sparsely available, but is consistent with a mediating role for epigenetic mechanisms in bringing together inherited and acquired risk factors into a neurodevelopmental etiological model of psychiatric disorders. Here, we review evidence from the epidemiological and neuroscience literature, and aim to converge the evidence into an etiological model of psychiatric disorders that encompasses environmental, genetic and epigenetic contributions. Given the dynamic nature of the epigenetic machinery and the potential reversibility of epigenetic modifications, future well-designed interdisciplinary and translational studies will be of key importance in order to identify new targets for prevention and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, G., Epigenetics. The seductive allure of behavioral epigenetics. Science, 2010. 329(5987): p. 24–27.

    PubMed  CAS  Google Scholar 

  2. Petronis, A., Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature, 2010. 465(7299): p. 721–727.

    PubMed  CAS  Google Scholar 

  3. Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 2003. 33Suppl: p. 245–254.

    PubMed  CAS  Google Scholar 

  4. Berger, S.L., The complex language of chromatin regulation during transcription. Nature, 2007. 447(7143): p. 407–412.

    PubMed  CAS  Google Scholar 

  5. Miller, B.H. and C. Wahlestedt, MicroRNA dysregulation in psychiatric disease. Brain Res, 2010. 1338: p. 89–99.

    PubMed  CAS  Google Scholar 

  6. Feinberg, A.P., Phenotypic plasticity and the epigenetics of human disease. Nature, 2007. 447(7143): p. 433–440.

    PubMed  CAS  Google Scholar 

  7. Okano, M., et al., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247–257.

    PubMed  CAS  Google Scholar 

  8. Li, E., T.H. Bestor, and R. Jaenisch, Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 1992. 69(6): p. 915–926.

    PubMed  CAS  Google Scholar 

  9. Weaver, J.R., M. Susiarjo, and M.S. Bartolomei, Imprinting and epigenetic changes in the early embryo. Mamm Genome, 2009. 20(9–10): p. 532–543.

    PubMed  Google Scholar 

  10. Hsieh, J. and A.J. Eisch, Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind. Neurobiology of disease, 2010. 39(1): p. 73–84.

    PubMed  Google Scholar 

  11. Yu, Y., P. Casaccia, and Q.R. Lu, Shaping the oligodendrocyte identity by epigenetic control. Epigenetics, 2010. 5(2): p. 124–128.

    PubMed  CAS  Google Scholar 

  12. Hsieh, J. and F.H. Gage, Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol, 2005. 17(6): p. 664–671.

    PubMed  CAS  Google Scholar 

  13. Levenson, J.M. and J.D. Sweatt, Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol Life Sci, 2006. 63(9): p. 1009–1016.

    PubMed  CAS  Google Scholar 

  14. Renthal, W. and E.J. Nestler, Epigenetic mechanisms in drug addiction. Trends Mol Med, 2008. 14(8): p. 341–350.

    PubMed  CAS  Google Scholar 

  15. Day, J.J. and J.D. Sweatt, DNA methylation and memory formation. Nat Neurosci, 2010. 13(11): p. 1319–1323.

    PubMed  CAS  Google Scholar 

  16. Feng, J., et al., Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 2010. 13(4): p. 423–430.

    PubMed  CAS  Google Scholar 

  17. Flavell, S.W. and M.E. Greenberg, Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci, 2008. 31: p. 563–590.

    PubMed  CAS  Google Scholar 

  18. MacDonald, J.L. and A.J. Roskams, Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol, 2009. 88(3): p. 170–183.

    PubMed  CAS  Google Scholar 

  19. Bale, T.L., et al., Early life programming and neurodevelopmental disorders. Biol Psychiatry, 2010. 68(4): p. 314–319.

    PubMed  Google Scholar 

  20. Fraga, M.F. and M. Esteller, Epigenetics and aging: the targets and the marks. Trends Genet, 2007. 23(8): p. 413–418.

    PubMed  CAS  Google Scholar 

  21. Chouliaras, L., et al., Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Progress in neurobiology, 2010. 90(4): p. 498–510.

    PubMed  CAS  Google Scholar 

  22. Christensen, B.C., et al., Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet, 2009. 5(8): p. e1000602.

    Google Scholar 

  23. Jodo, E., C. Chiang, and G. Aston-Jones, Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience, 1998. 83(1): p. 63–79.

    PubMed  CAS  Google Scholar 

  24. Chouliaras, L., et al., Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain, behavior, and immunity, 2010.

  25. Colman, R.J., et al., Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 2009. 325(5937): p. 201–204.

    PubMed  CAS  Google Scholar 

  26. Mattson, M.P., et al., Neuroprotective and neurorestorative signal transduction mechanisms in brain aging: modification by genes, diet and behavior. Neurobiol Aging, 2002. 23(5): p. 695–705.

    PubMed  CAS  Google Scholar 

  27. Sohal, R.S. and R. Weindruch, Oxidative stress, caloric restriction, and aging. Science, 1996. 273(5271): p. 59–63.

    PubMed  CAS  Google Scholar 

  28. Rutten, B.P., et al., Caloric restriction and aging but not overexpression of SOD1 affect hippocampal volumes in mice. Mechanisms of ageing and development, 2010. 131(9): p. 574–579.

    PubMed  CAS  Google Scholar 

  29. Chouliaras, L., et al., Prevention of age-related changes in hippocampal levels of 5-methylcytidine by caloric restriction. Neurobiology of aging, 2011.

  30. Liu, L., et al., DNA methylation impacts on learning and memory in aging. Neurobiol Aging, 2009. 30(4): p. 549–560.

    PubMed  CAS  Google Scholar 

  31. Peleg, S., et al., Altered histone acetylation is associated with agedependent memory impairment in mice. Science, 2010. 328(5979): p. 753–756.

    PubMed  CAS  Google Scholar 

  32. Longo, V.D. and B.K. Kennedy, Sirtuins in aging and age-related disease. Cell, 2006. 126(2): p. 257–268.

    PubMed  CAS  Google Scholar 

  33. Mehler, M.F., Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Progress in neurobiology, 2008. 86(4): p. 305–341.

    PubMed  CAS  Google Scholar 

  34. Khan, N.L. and N.W. Wood, Prader-Willi and Angelman syndromes: update on genetic mechanisms and diagnostic complexities. Curr Opin Neurol, 1999. 12(2): p. 149–154.

    PubMed  CAS  Google Scholar 

  35. Lalande, M. and M.A. Calciano, Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci, 2007. 64(7–8): p. 947–960.

    PubMed  CAS  Google Scholar 

  36. Christodoulou, J. and L.S. Weaving, MECP2 and beyond: phenotypegenotype correlations in Rett syndrome. J Child Neurol, 2003. 18(10): p. 669–674.

    PubMed  Google Scholar 

  37. Dimitropoulos, A. and R.T. Schultz, Autistic-like symptomatology in Prader-Willi syndrome: a review of recent findings. Curr Psychiatry Rep, 2007. 9(2): p. 159–164.

    PubMed  Google Scholar 

  38. van Os, J., B.P. Rutten, and R. Poulton, Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr Bull, 2008. 34(6): p. 1066–1082.

    PubMed  Google Scholar 

  39. Petronis, A., et al., Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull, 2003. 29(1): p. 169–178.

    PubMed  Google Scholar 

  40. Suzuki, K., [Japanese adolescents’ drinking and problem drinking]. Nippon Rinsho, 1997. 55Suppl: p. 522–526.

    PubMed  Google Scholar 

  41. McClellan, J., et al., Clinical characteristics related to severity of sexual abuse: a study of seriously mentally ill youth. Child Abuse Negl, 1995. 19(10): p. 1245–1254.

    PubMed  CAS  Google Scholar 

  42. Sansone, R.A., L.A. Sansone, and E.L. Righter, Panic disorder: the ultimate anxiety. J Womens Health, 1998. 7(8): p. 983–989.

    PubMed  CAS  Google Scholar 

  43. Mill, J., et al., Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene. Am J Med Genet B Neuropsychiatr Genet, 2006. 141(4): p. 421–425.

    Google Scholar 

  44. Lepine, J.P. and S. Bouchez, Epidemiology of depression in the elderly. Int Clin Psychopharmacol, 1998. 13Suppl 5: p. S7–12.

    PubMed  Google Scholar 

  45. Barbieri, N.B., Psychoanalytic contributions to the study of gender issues. Can J Psychiatry, 1999. 44(1): p. 72–76.

    PubMed  CAS  Google Scholar 

  46. Dempster, E.L., et al., Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Human molecular genetics, 2011. 20(24): p. 4786–4796.

    PubMed  CAS  Google Scholar 

  47. Saito, T., [Psychiatric studies on alcoholism in Japan]. Arukoru Kenkyuto Yakubutsu Ison, 1995. 30(6): p. 411–425.

    PubMed  CAS  Google Scholar 

  48. Rutten, B.P. and J. Mill, Epigenetic mediation of environmental influences in major psychotic disorders. Schizophrenia bulletin, 2009. 35(6): p. 1045–1056.

    PubMed  Google Scholar 

  49. Jirtle, R.L. and M.K. Skinner, Environmental epigenomics and disease susceptibility. Nature reviews. Genetics, 2007. 8(4): p. 253–262.

    PubMed  CAS  Google Scholar 

  50. Fraga, M.F., et al., Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A, 2005. 102(30): p. 10604–10609.

    PubMed  CAS  Google Scholar 

  51. Sherazi, R., et al., What’s new? The clinical epidemiology of bipolar I disorder. Harv Rev Psychiatry, 2006. 14(6): p. 273–284.

    PubMed  Google Scholar 

  52. Bijl, R.V., et al., Gender and age-specific first incidence of DSM-III-R psychiatric disorders in the general population. Results from the Netherlands Mental Health Survey and Incidence Study (NEMESIS). Soc Psychiatry Psychiatr Epidemiol, 2002. 37(8): p. 372–379.

    PubMed  Google Scholar 

  53. Bijl, R.V., A. Ravelli, and G. van-Zessen, Prevalence of psychiatric disorder in the general population: results of The Netherlands Mental Health Survey and Incidence Study (NEMESIS). Soc-Psychiatry-Psychiatr-Epidemiol, 1998. 33(12): p. 587–595.

    PubMed  CAS  Google Scholar 

  54. Wittchen, H.U., M.B. Stein, and R.C. Kessler, Social fears and social phobia in a community sample of adolescents and young adults: prevalence, risk factors and co-morbidity. Psychol Med, 1999. 29(2): p. 309–323.

    PubMed  CAS  Google Scholar 

  55. Polanczyk, G. and L.A. Rohde, Epidemiology of attention-deficit/hyperactivity disorder across the lifespan. Curr Opin Psychiatry, 2007. 20(4): p. 386–392.

    PubMed  Google Scholar 

  56. Fombonne, E., Epidemiology of pervasive developmental disorders. Pediatr Res, 2009. 65(6): p. 591–598.

    PubMed  Google Scholar 

  57. Fombonne, E., Epidemiological trends in rates of autism. Mol Psychiatry, 2002. 7Suppl 2: p. S4–S6.

    PubMed  Google Scholar 

  58. Nelson, C.B. and H.U. Wittchen, DSM-IV alcohol disorders in a general population sample of adolescents and young adults. Addiction, 1998. 93(7): p. 1065–1077.

    PubMed  CAS  Google Scholar 

  59. van Os, J. and S. Kapur, Schizophrenia. Lancet, 2009. 374(9690): p. 635–645.

    PubMed  Google Scholar 

  60. van Os, J., G. Kenis, and B.P. Rutten, The environment and schizophrenia. Nature, 2010. 468(7321): p. 203–212.

    PubMed  Google Scholar 

  61. McCarthy, M.M., et al., The epigenetics of sex differences in the brain. The Journal of neuroscience: the official journal of the Society for Neuroscience, 2009. 29(41): p. 12815–12823.

    CAS  Google Scholar 

  62. Schwarz, J.M., B.M. Nugent, and M.M. McCarthy, Developmental and hormone-induced epigenetic changes to estrogen and progesterone receptor genes in brain are dynamic across the life span. Endocrinology. 151(10): p. 4871–4881.

  63. Waggoner, D., Mechanisms of disease: epigenesis. Semin Pediatr Neurol, 2007. 14(1): p. 7–14.

    PubMed  Google Scholar 

  64. Monteiro, J., et al., Commitment to X inactivation precedes the twinning event in monochorionic MZ twins. Am J Hum Genet, 1998. 63(2): p. 339–346.

    PubMed  CAS  Google Scholar 

  65. Manning, N., The influence of twinning on cardiac development. Early Hum Dev, 2008. 84(3): p. 173–179.

    PubMed  Google Scholar 

  66. Hall, L.L. and J.B. Lawrence, The cell biology of a novel chromosomal RNA: chromosome painting by XIST/Xist RNA initiates a remodeling cascade. Semin Cell Dev Biol, 2003. 14(6): p. 369–378.

    PubMed  CAS  Google Scholar 

  67. Loat, C.S., et al., X inactivation as a source of behavioural differences in monozygotic female twins. Twin Res, 2004. 7(1): p. 54–61.

    PubMed  Google Scholar 

  68. Peerbooms, O.L., et al., No major role for X-inactivation in variations of intelligence and behavioral problems at middle childhood. American journal of medical genetics. Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics, 2010. 153B(7): p. 1311–1317.

    CAS  Google Scholar 

  69. Rosa, A., et al., Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet B Neuropsychiatr Genet, 2008. 147B(4): p. 459–462.

    PubMed  Google Scholar 

  70. Franklin, T.B., et al., Epigenetic transmission of the impact of early stress across generations. Biological psychiatry, 2010. 68(5): p. 408–415.

    PubMed  Google Scholar 

  71. Malaspina, D., et al., Growth and schizophrenia: aetiology, epidemiology and epigenetics. Novartis Found Symp, 2008. 289: p. 196–203; discussion 203–7, 238–40.

    PubMed  CAS  Google Scholar 

  72. Delahanty, R.J., et al., Maternal transmission of a rare GABRB3 signal peptide variant is associated with autism. Mol Psychiatry, 2009.

  73. Anney, R.J., et al., Parent of origin effects in attention/deficit hyperactivity disorder (ADHD): analysis of data from the international multicenter ADHD genetics (IMAGE) program. Am J Med Genet B Neuropsychiatr Genet, 2008. 147B(8): p. 1495–1500.

    PubMed  CAS  Google Scholar 

  74. De Luca, V., et al., Parent of origin effect and differential allelic expression of BDNF Val66Met in suicidal behaviour. World J Biol Psychiatry.

  75. De Luca, V., et al., Differential expression and parent-of-origin effect of the 5-HT2A receptor gene C102T polymorphism: analysis of suicidality in schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet, 2007. 144B(3): p. 370–374.

    PubMed  Google Scholar 

  76. Goos, L.M., P. Ezzatian, and R. Schachar, Parent-of-origin effects in attention-deficit hyperactivity disorder. Psychiatry Res, 2007. 149(1–3): p. 1–9.

    PubMed  Google Scholar 

  77. Bassett, S.S., et al., Further evidence of a maternal parent-of-origin effect on chromosome 10 in late-onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet, 2006. 141B(5): p. 537–540.

    PubMed  Google Scholar 

  78. Kosztolanyi, G., [First decade of post-genomic era. Hopes, disappointments, new answers]. Orvosi hetilap, 2010. 151(51): p. 2099–2104.

    PubMed  Google Scholar 

  79. Grether, J.K., et al., Risk of autism and increasing maternal and paternal age in a large north American population. Am J Epidemiol, 2009. 170(9): p. 1118–1126.

    PubMed  Google Scholar 

  80. Reichenberg, A., et al., Advancing paternal and maternal age are both important for autism risk. Am J Public Health, 2010. 100(5): p. 772–773; author reply 773.

    PubMed  Google Scholar 

  81. Croen, L.A., et al., Maternal and paternal age and risk of autism spectrum disorders. Arch Pediatr Adolesc Med, 2007. 161(4): p. 334–340.

    PubMed  Google Scholar 

  82. Reichenberg, A., et al., Advancing paternal age and autism. Arch Gen Psychiatry, 2006. 63(9): p. 1026–1032.

    PubMed  Google Scholar 

  83. Miller, B., et al., Meta-analysis of Paternal Age and Schizophrenia Risk in Male Versus Female Offspring. Schizophr Bull, 2010.

  84. Saha, S., et al., Advanced paternal age is associated with impaired neurocognitive outcomes during infancy and childhood. PLoS Med, 2009. 6(3): p. e40.

    PubMed  Google Scholar 

  85. Saha, S., et al., Maternal age and paternal age are associated with distinct childhood behavioural outcomes in a general population birth cohort. Schizophr Res, 2009. 115(2–3): p. 130–135.

    PubMed  Google Scholar 

  86. Wichers, M., et al., Mechanisms of gene-environment interactions in depression: evidence that genes potentiate multiple sources of adversity. Psychological medicine, 2009. 39(7): p. 1077–1086.

    PubMed  CAS  Google Scholar 

  87. Wichers, M.C., et al., Prenatal life and post-natal psychopathology: evidence for negative gene-birth weight interaction. Psychol Med, 2002. 32(7): p. 1165–1174.

    PubMed  CAS  Google Scholar 

  88. Oh, G. and A. Petronis, Environmental studies of schizophrenia through the prism of epigenetics. Schizophr Bull, 2008. 34(6): p. 1122–1129.

    PubMed  Google Scholar 

  89. Crow, T.J., How and why genetic linkage has not solved the problem of psychosis: review and hypothesis. Am J Psychiatry, 2007. 164(1): p. 13–21.

    PubMed  Google Scholar 

  90. Wong, A.H., Gottesman, II, and A. Petronis, Phenotypic differences in genetically identical organisms: the epigenetic perspective. Human molecular genetics, 2005. 14Spec No 1: p. R11–R18.

    PubMed  CAS  Google Scholar 

  91. Khashan, A.S., et al., Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Archives of General Psychiatry, 2008. 65(2): p. 146–152.

    PubMed  Google Scholar 

  92. Huttunen, M.O. and P. Niskanen, Prenatal loss of father and psychiatric disorders. Arch Gen Psychiatry, 1978. 35(4): p. 429–431.

    PubMed  CAS  Google Scholar 

  93. Van Os, J. and J.-P. Selten, Prenatal exposure to maternal stress and subsequent schizophrenia: The May 1940 invasion of The Netherlands. British Journal of Psychiatry, 1998. 172: p. 324–326.

    PubMed  Google Scholar 

  94. Susser, E., et al., Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry, 1996. 53(1): p. 25–31.

    CAS  Google Scholar 

  95. Xu, M.Q., et al., Prenatal malnutrition and adult schizophrenia: further evidence from the 1959–1961 Chinese famine. Schizophr Bull, 2009. 35(3): p. 568–576.

    PubMed  Google Scholar 

  96. Brown, A.S., et al., Elevated prenatal homocysteine levels as a risk factor for schizophrenia. Archives of General Psychiatry, 2007. 64(1): p. 31–39.

    PubMed  CAS  Google Scholar 

  97. Hollister, J.M., P. Laing, and S.A. Mednick, Rhesus incompatibility as a risk factor for schizophrenia in male adults. Arch Gen Psychiatry, 1996. 53(1): p. 19–24.

    PubMed  CAS  Google Scholar 

  98. McGrath, J.J., et al., Neonatal vitamin D status and risk of schizophrenia: a population-based case-control study Archives of General Psychiatry, in press.

  99. Mortensen, P.B., et al., Toxoplasma gondii as a risk factor for early-onset schizophrenia: analysis of filter paper blood samples obtained at birth. Biological Psychiatry, 2007. 61(5): p. 688–693.

    PubMed  Google Scholar 

  100. Brown, A.S., et al., Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. American Journal of Psychiatry, 2005. 162(4): p. 767–773.

    PubMed  Google Scholar 

  101. Brown, A.S. and E.J. Derkits, Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry, 2010. 167(3): p. 261–280.

    PubMed  Google Scholar 

  102. Sorensen, H.J., et al., Association between prenatal exposure to bacterial infection and risk of schizophrenia. Schizophrenia Bulletin, 2009. 35(3): p. 631–637.

    PubMed  Google Scholar 

  103. Clarke, M.C., et al., Evidence for an interaction between familial liability and prenatal exposure to infection in the causation of schizophrenia. American Journal of Psychiatry, 2009. 166(9): p. 1025–1030.

    PubMed  Google Scholar 

  104. Sorensen, H.J., et al., Do hypertension and diuretic treatment in pregnancy increase the risk of schizophrenia in offspring? Am J Psychiatry, 2003. 160(3): p. 464–468.

    PubMed  Google Scholar 

  105. Sorensen, H.J., et al., Association between prenatal exposure to analgesics and risk of schizophrenia. Br J Psychiatry, 2004. 185: p. 366–371.

    PubMed  Google Scholar 

  106. Damm, K., ErbA: tumor suppressor turned oncogene? FASEB J, 1993. 7(10): p. 904–909.

    PubMed  CAS  Google Scholar 

  107. Meltzer, H.Y., The mechanism of action of novel antipsychotic drugs. Schizophr Bull, 1991. 17(2): p. 263–287.

    PubMed  CAS  Google Scholar 

  108. Smits, L., et al., Association between short birth intervals and schizophrenia in the offspring. Schizophr Res, 2004. 70(1): p. 49–56.

    PubMed  Google Scholar 

  109. Ohlund, L.S. and C.M. Hultman, Early parental death: relation to electrodermal orienting response and gender in schizophrenia. Schizophr Res, 1992. 7(2): p. 125–133.

    PubMed  CAS  Google Scholar 

  110. Selten, J.P., et al., Schizophrenia and 1957 pandemic of influenza: meta-analysis. Schizophrenia Bulletin, 2010. 36(2): p. 219–228.

    PubMed  Google Scholar 

  111. Selten, J.P., et al., No relationship between risk of schizophrenia and prenatal exposure to stress during the Six-Day War or Yom Kippur War in Israel. Schizophrenia Research, 2003. 63(1–2): p. 131–135.

    PubMed  Google Scholar 

  112. McGrath, J., et al., Low maternal vitamin D as a risk factor for schizophrenia: a pilot study using banked sera. Schizophrenia Research, 2003. 63(1–2): p. 73–78.

    PubMed  Google Scholar 

  113. Cannon, T.D., et al., A prospective cohort study of neurodevelopmental processes in the genesis and epigenesis of schizophrenia. Dev Psychopathol, 1999. 11(3): p. 467–485.

    PubMed  CAS  Google Scholar 

  114. Buka, S.L., et al., Maternal infections and subsequent psychosis among offspring. Archives of General Psychiatry, 2001. 58(11): p. 1032–1037.

    PubMed  CAS  Google Scholar 

  115. Brown, A.S., et al., No evidence of relation between maternal exposure to herpes simplex virus type 2 and risk of schizophrenia? American Journal of Psychiatry, 2006. 163(12): p. 2178–2180.

    PubMed  Google Scholar 

  116. Heijmans, B.T., et al., Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A, 2008. 105(44): p. 17046–17049.

    PubMed  CAS  Google Scholar 

  117. Butler, P.D., et al., Prenatal nutritional deprivation as a risk factor in schizophrenia: preclinical evidence. Neuropsychopharmacology, 1994. 11(4): p. 227–235.

    PubMed  CAS  Google Scholar 

  118. Tienari, P., et al., The Finnish adoptive family study of schizophrenia. Implications for family research. Br J Psychiatry Suppl, 1994(23): p. 20–26.

  119. Wahlberg, K.E., et al., Gene-environment interaction in vulnerability to schizophrenia: findings from the Finnish Adoptive Family Study of Schizophrenia. Am J Psychiatry, 1997. 154(3): p. 355–362.

    PubMed  CAS  Google Scholar 

  120. Tienari, P., et al., Genotype-environment interaction in schizophrenia-spectrum disorder. Long-term follow-up study of Finnish adoptees. British Journal of Psychiatry, 2004. 184: p. 216–222.

    PubMed  Google Scholar 

  121. Tienari, P., et al., Interaction of genetic and psychosocial factors in schizophrenia. Acta Psychiatr Scand Suppl, 1985. 319: p. 19–30.

    PubMed  CAS  Google Scholar 

  122. Carter, J.W., et al., MMPI variables predictive of schizophrenia in the Copenhagen High-Risk Project: a 25-year follow-up. Acta Psychiatr Scand, 1999. 99(6): p. 432–440.

    PubMed  CAS  Google Scholar 

  123. Schreier, A., et al., Prospective study of peer victimization in childhood and psychotic symptoms in a nonclinical population at age 12 years. Arch Gen Psychiatry, 2009. 66(5): p. 527–536.

    PubMed  Google Scholar 

  124. Kessler, R.C., et al., Childhood adversities and adult psychopathology in the WHO World Mental Health Surveys. Br J Psychiatry, 2010. 197: p. 378–385.

    PubMed  Google Scholar 

  125. McLaughlin, K.A., et al., Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication II: associations with persistence of DSM-IV disorders. Arch Gen Psychiatry, 2010. 67(2): p. 124–132.

    PubMed  Google Scholar 

  126. Green, J.G., et al., Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch Gen Psychiatry, 2010. 67(2): p. 113–123.

    PubMed  Google Scholar 

  127. Bruffaerts, R., et al., Childhood adversities as risk factors for onset and persistence of suicidal behaviour. Br J Psychiatry, 2010. 197(1): p. 20–27.

    PubMed  Google Scholar 

  128. Weaver, I.C., et al., Epigenetic programming by maternal behavior. Nature neuroscience, 2004. 7(8): p. 847–854.

    PubMed  CAS  Google Scholar 

  129. Weaver, I.C., et al., Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neurosci, 2005. 25(47): p. 11045–11054.

    PubMed  CAS  Google Scholar 

  130. Weaver, I.C., M.J. Meaney, and M. Szyf, Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A, 2006. 103(9): p. 3480–3485.

    PubMed  CAS  Google Scholar 

  131. McGowan, P.O., et al., Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature neuroscience, 2009. 12(3): p. 342–348.

    PubMed  CAS  Google Scholar 

  132. Arseneault, L., et al., Causal association between cannabis and psychosis: examination of the evidence. Br J Psychiatry, 2004. 184: p. 110–117.

    PubMed  Google Scholar 

  133. Henquet, C., et al., Gene-environment interplay between cannabis and psychosis. Schizophrenia bulletin, 2008. 34(6): p. 1111–1121.

    PubMed  Google Scholar 

  134. Murray, R.M., et al., Cannabis, the mind and society: the hash realities. Nature reviews. Neuroscience, 2007. 8(11): p. 885–895.

    PubMed  CAS  Google Scholar 

  135. Houston, J.E., et al., Childhood sexual abuse, early cannabis use, and psychosis: testing an interaction model based on the National Comorbidity Survey. Schizophr Bull, 2008. 34(3): p. 580–585.

    PubMed  Google Scholar 

  136. Caspi, A., et al., Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry, 2005. 57(10): p. 1117–1127.

    PubMed  CAS  Google Scholar 

  137. Henquet, C., et al., COMT ValMet moderation of cannabisinduced psychosis: a momentary assessment study of ’switching on’ hallucinations in the flow of daily life. Acta psychiatrica Scandinavica, 2009. 119(2): p. 156–160.

    PubMed  CAS  Google Scholar 

  138. van Winkel, R., Family-based analysis of genetic variation underlying psychosis-inducing effects of cannabis: sibling analysis and proband follow-up. Archives of general psychiatry, 2011. 68(2): p. 148–157.

    PubMed  Google Scholar 

  139. De Hert, M., et al., Effects of cannabis use on age at onset in schizophrenia and bipolar disorder. Schizophr Res.

  140. G.R.O.U.P., Evidence that Familial Liability for Psychosis is Expressed as Differential Sensitivity to Cannabis: an Analysis of Patient-Sibling and Sibling-Control Pairs. Archives of General Psychiatry, 2010. in press.

  141. Chevaleyre, V., K.A. Takahashi, and P.E. Castillo, Endocannabinoid-Mediated Synaptic Plasticity in the CNS. Annu Rev Neurosci, 2006.

  142. Villares, J., Chronic use of marijuana decreases cannabinoid receptor binding and mRNA expression in the human brain. Neuroscience, 2007. 145(1): p. 323–334.

    PubMed  CAS  Google Scholar 

  143. Ellgren, M., S.M. Spano, and Y.L. Hurd, Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology, 2007. 32(3): p. 607–615.

    PubMed  CAS  Google Scholar 

  144. Casu, M.A., et al., Effect of delta9-tetrahydrocannabinol on phosphorylated CREB in rat cerebellum: an immunohistochemical study. Brain Res, 2005. 1048(1–2): p. 41–47.

    PubMed  CAS  Google Scholar 

  145. Fernandez-Ruiz, J., et al., Cannabinoids and gene expression during brain development. Neurotox Res, 2004. 6(5): p. 389–401.

    PubMed  Google Scholar 

  146. Mato, S., et al., A single in-vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat Neurosci, 2004. 7(6): p. 585–586.

    PubMed  CAS  Google Scholar 

  147. Scallet, A.C., Neurotoxicology of cannabis and THC: a review of chronic exposure studies in animals. Pharmacol Biochem Behav, 1991. 40(3): p. 671–676.

    PubMed  CAS  Google Scholar 

  148. Heath, R.G., et al., Cannabis sativa: effects on brain function and ultrastructure in rhesus monkeys. Biol Psychiatry, 1980. 15(5): p. 657–690.

    PubMed  CAS  Google Scholar 

  149. Hoffman, A.F., et al., Functional tolerance and blockade of longterm depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J Neurosci, 2003. 23(12): p. 4815–4820.

    PubMed  CAS  Google Scholar 

  150. Featherstone, R.E., S. Kapur, and P.J. Fletcher, The amphetamine-induced sensitized state as a model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 2007. 31(8): p. 1556–1571.

    PubMed  CAS  Google Scholar 

  151. Uslaner, J., et al., Amphetamine and cocaine induce different patterns of c-fos mRNA expression in the striatum and subthalamic nucleus depending on environmental context. European Journal of Neuroscience, 2001. 13(10): p. 1977–1983.

    PubMed  CAS  Google Scholar 

  152. Bibb, J.A., et al., Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 2001. 410(6826): p. 376–380.

    PubMed  CAS  Google Scholar 

  153. Nestler, E.J., M. Barrot, and D.W. Self, Delta FosB: A sustained molecular switch for addiction. Proceedings of the National Academy of Sciences, 2001. 98(20): p. 11042.

    CAS  Google Scholar 

  154. Kumar, A., et al., Chromatin Remodeling Is a Key Mechanism Underlying Cocaine-Induced Plasticity in Striatum. Neuron, 2005. 48(2): p. 303–314.

    PubMed  CAS  Google Scholar 

  155. Sekine, Y., et al., Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry, 2001. 158(8): p. 1206–1214.

    PubMed  CAS  Google Scholar 

  156. Lehrmann, E., et al., Transcriptional changes common to human cocaine, cannabis and phencyclidine abuse. PLoS One, 2006. 1: p. e114.

    PubMed  Google Scholar 

  157. Greenstein, R., G. Novak, and P. Seeman, Amphetamine sensitization elevates CaMKIIbeta mRNA. Synapse, 2007. 61(10): p. 827–834.

    PubMed  CAS  Google Scholar 

  158. Iwata, S.I., et al., Enhanced dopamine release and phosphorylation of synapsin I and neuromodulin in striatal synaptosomes after repeated amphetamine. J Pharmacol Exp Ther, 1997. 283(3): p. 1445–1452.

    PubMed  CAS  Google Scholar 

  159. Cantor-Graae, E. and J.P. Selten, Schizophrenia and migration: a meta-analysis and review. American Journal of Psychiatry, 2005. 162(1): p. 12–24.

    PubMed  Google Scholar 

  160. Bourque, F., E. van der Ven, and A. Malla, A meta-analysis of the risk for psychotic disorders among first- and second-generation immigrants. Psychological Medicine, 2010: p. 1–14.

  161. Bresnahan, M., et al., Race and risk of schizophrenia in a US birth cohort: another example of health disparity? Int J Epidemiol, 2007. 36(4): p. 751–758.

    PubMed  Google Scholar 

  162. Veling, W., et al., Ethnic density of neighborhoods and incidence of psychotic disorders among immigrants. American Journal of Psychiatry, 2008. 165(1): p. 66–73.

    PubMed  Google Scholar 

  163. Boydell, J., et al., Incidence of schizophrenia in ethnic minorities in London: ecological study into interactions with environment. Bmj, 2001. 323(7325): p. 1336–1338.

    PubMed  CAS  Google Scholar 

  164. Morgan, C., et al., Migration, ethnicity, and psychosis: toward a sociodevelopmental model. Schizophrenia bulletin, 2010. 36(4): p. 655–664.

    PubMed  Google Scholar 

  165. Selten, J.P. and E. Cantor-Graae, Social defeat: risk factor for schizophrenia? Br J Psychiatry, 2005. 187: p. 101–102.

    PubMed  Google Scholar 

  166. Renthal, W., et al., Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron, 2007. 56(3): p. 517–529.

    PubMed  CAS  Google Scholar 

  167. Tsankova, N.M., et al., Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci, 2006. 9(4): p. 519–525.

    PubMed  CAS  Google Scholar 

  168. Cougnard, A., et al., Does normal developmental expression of psychosis combine with environmental risk to cause persistence of psychosis? A psychosis proneness-persistence model. Psychol Med, 2007: p. 1–15.

  169. Dominguez, M.D., et al., Evidence That Onset of Clinical Psychosis Is an Outcome of Progressively More Persistent Subclinical Psychotic Experiences: An 8-Year Cohort Study. Schizophr Bull, 2009.

  170. Baumgardner, T.L., K.E. Green, and A.L. Reiss, A behavioral neurogenetics approach to developmental disabilities: gene-brainbehavior associations. Curr Opin Neurol, 1994. 7(2): p. 172–178.

    PubMed  CAS  Google Scholar 

  171. Mann, J.R., Imprinting in the germ line. Stem Cells, 2001. 19(4): p. 287–294.

    PubMed  CAS  Google Scholar 

  172. Rice, K.L., I. Hormaeche, and J.D. Licht, Epigenetic regulation of normal and malignant hematopoiesis. Oncogene, 2007. 26(47): p. 6697–714.

    PubMed  CAS  Google Scholar 

  173. Van Gaal, L.F., et al., Clinical endocrinology of human leptin. Int J Obes Relat Metab Disord, 1999. 23Suppl 1: p. 29–36.

    PubMed  Google Scholar 

  174. Hansen, R.S., et al., The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(25): p. 14412–14417.

    PubMed  CAS  Google Scholar 

  175. Klein, C.J., et al., Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nature genetics, 2011. 43(6): p. 595–600.

    PubMed  CAS  Google Scholar 

  176. Sugden, C., One-carbon metabolism in psychiatric illness. Nutr Res Rev, 2006. 19(1): p. 117–136.

    PubMed  CAS  Google Scholar 

  177. van der Put, N.M., et al., Folate, homocysteine and neural tube defects: an overview. Exp Biol Med (Maywood), 2001. 226(4): p. 243–270.

    Google Scholar 

  178. Zhang, H.Y., et al., Neural tube defects and disturbed maternal folate- and homocysteine-mediated one-carbon metabolism. Exp Neurol, 2008. 212(2): p. 515–521.

    PubMed  CAS  Google Scholar 

  179. Pasca, S.P., et al., One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders. J Cell Mol Med, 2009. 13(10): p. 4229–4238.

    PubMed  CAS  Google Scholar 

  180. de Jonge, R., et al., Polymorphisms in folate-related genes and risk of pediatric acute lymphoblastic leukemia. Blood, 2009. 113(10): p. 2284–2289.

    PubMed  Google Scholar 

  181. Wiemels, J.L., et al., Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci U S A, 2001. 98(7): p. 4004–4009.

    PubMed  CAS  Google Scholar 

  182. Kronenberg, G., M. Colla, and M. Endres, Folic acid, neurodegenerative and neuropsychiatric disease. Curr Mol Med, 2009. 9(3): p. 315–323.

    PubMed  CAS  Google Scholar 

  183. Kim, Y.I., Folate and carcinogenesis: evidence, mechanisms, and implications. J Nutr Biochem, 1999. 10(2): p. 66–88.

    PubMed  CAS  Google Scholar 

  184. Kim, J.M., et al., Folate, vitamin b(12), and homocysteine as risk factors for cognitive decline in the elderly. Psychiatry Investig, 2008. 5(1): p. 36–40.

    PubMed  Google Scholar 

  185. Levine, A.J., et al., A candidate gene study of folate-associated one carbon metabolism genes and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev, 2010. 19(7): p. 1812–1821.

    PubMed  CAS  Google Scholar 

  186. Smulders, Y.M. and C.D. Stehouwer, Folate metabolism and cardiovascular disease. Semin Vasc Med, 2005. 5(2): p. 87–97.

    PubMed  Google Scholar 

  187. Carmichael, S.L., et al., Hypospadias and intake of nutrients related to one-carbon metabolism. J Urol, 2009. 181(1): p. 315–321; discussion 321.

    PubMed  CAS  Google Scholar 

  188. Wani, N.A., A. Hamid, and J. Kaur, Folate status in various pathophysiological conditions. IUBMB Life, 2008. 60(12): p. 834–842.

    PubMed  Google Scholar 

  189. Betcheva, E.T., et al., Case-control association study of 59 candidate genes reveals the DRD2 SNP rs6277 (C957T) as the only susceptibility factor for schizophrenia in the Bulgarian population. J Hum Genet, 2009. 54(2): p. 98–107.

    PubMed  CAS  Google Scholar 

  190. Feng, L.G., et al., Association of plasma homocysteine and methylenetetrahydrofolate reductase C677T gene variant with schizophrenia: A Chinese Han population-based case-control study. Psychiatry Res, 2009. 168(3): p. 205–208.

    PubMed  CAS  Google Scholar 

  191. Gaysina, D., et al., No association with the 5,10-methylenetetrahydrofolate reductase gene and major depressive disorder: results of the depression case control (DeCC) study and a meta-analysis. Am J Med Genet B Neuropsychiatr Genet, 2008. 147B(6): p. 699–706.

    PubMed  CAS  Google Scholar 

  192. Gilbody, S., S. Lewis, and T. Lightfoot, Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol, 2007. 165(1): p. 1–13.

    PubMed  Google Scholar 

  193. Pan, C.C., et al., Association analysis of the COMT/MTHFR genes and geriatric depression: an MRI study of the putamen. Int J Geriatr Psychiatry, 2009. 24(8): p. 847–855.

    PubMed  Google Scholar 

  194. Yuan, Y.G., Z.J. Zhang, and J.J. Li, Plasma homocysteine but not MTHFR gene polymorphism is associated with geriatric depression in the Chinese population. Journal, 2010.

  195. Yu, L., et al., No association between polymorphisms of methylenetetrahydrofolate reductase gene and schizophrenia in both Chinese and Scottish populations. Mol Psychiatry, 2004. 9(12): p. 1063–1065.

    PubMed  CAS  Google Scholar 

  196. del Rio Garcia, C., et al., Maternal MTHFR 677C>T genotype and dietary intake of folate and vitamin B(12): their impact on child neurodevelopment. Nutr Neurosci, 2009. 12(1): p. 13–120.

    PubMed  Google Scholar 

  197. Ueland, P.M., et al., Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci, 2001. 22(4): p. 195–201.

    PubMed  CAS  Google Scholar 

  198. McGuffin, P., et al., The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry, 2003. 60(5): p. 497–502.

    PubMed  Google Scholar 

  199. Lichtenstein, P., et al., Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet, 2009. 373(9659): p. 234–239.

    PubMed  CAS  Google Scholar 

  200. Cardno, A.G., et al., A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry, 2002. 159(4): p. 539–545.

    PubMed  Google Scholar 

  201. Peerbooms, O.L., et al., Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: Evidence for a common genetic vulnerability? Brain, behavior, and immunity, 2010.

  202. Gonzales, M.L. and J.M. LaSalle, The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep, 2010. 12(2): p. 127–134.

    PubMed  Google Scholar 

  203. Amir, R.E., et al., Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 1999. 23(2): p. 185–188.

    PubMed  CAS  Google Scholar 

  204. Klauck, S.M., et al., A mutation hot spot for nonspecific X-linked mental retardation in the MECP2 gene causes the PPM-X syndrome. Am J Hum Genet, 2002. 70(4): p. 1034–1037.

    PubMed  CAS  Google Scholar 

  205. Couvert, P., et al., MECP2 is highly mutated in X-linked mental retardation. Hum Mol Genet, 2001. 10(9): p. 941–946.

    PubMed  CAS  Google Scholar 

  206. Zisook, S., et al., Command hallucinations in outpatients with schizophrenia. J Clin Psychiatry, 1995. 56(10): p. 462–465.

    PubMed  CAS  Google Scholar 

  207. Uddin, M., et al., Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med, 2010: p. 1–11.

  208. Uddin, M., et al., Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci U S A, 2010. 107(20): p. 9470–9475.

    PubMed  CAS  Google Scholar 

  209. Abdolmaleky, H.M., et al., Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet, 2006. 15(21): p. 3132–3145.

    PubMed  CAS  Google Scholar 

  210. Grayson, D.R., et al., Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A, 2005. 102(26): p. 9341–9346.

    PubMed  CAS  Google Scholar 

  211. Dempster, E.L., et al., The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC medical genetics, 2006. 7: p. 10.

    PubMed  Google Scholar 

  212. Mill, J., et al., Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet, 2008. 82(3): p. 696–711.

    PubMed  CAS  Google Scholar 

  213. Rosenfeld, C.S., Animal models to study environmental epigenetics. Biology of reproduction, 2010. 82(3): p. 473–488.

    PubMed  CAS  Google Scholar 

  214. Veldic, M., et al., In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A, 2005. 102(6): p. 2152–2157.

    PubMed  CAS  Google Scholar 

  215. Kuratomi, G., et al., Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry, 2007.

  216. Mastroeni, D., et al., Epigenetic changes in Alzheimer’s disease: Decrements in DNA methylation. Neurobiol Aging, 2008.

  217. Yoshikai, S., et al., Genomic organization of the human amyloid beta-protein precursor gene. Gene, 1990. 87(2): p. 257–263.

    PubMed  CAS  Google Scholar 

  218. Tohgi, H., et al., The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett, 1999. 275(2): p. 89–92.

    PubMed  CAS  Google Scholar 

  219. Barrachina, M. and I. Ferrer, DNA Methylation of Alzheimer Disease and Tauopathy-Related Genes in Postmortem Brain. J Neuropathol Exp Neurol, 2009.

  220. Wang, S.C., B. Oelze, and A. Schumacher, Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One, 2008. 3(7): p. e2698.

    PubMed  Google Scholar 

  221. Silva, P.N., et al., Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer’s disease. J Alzheimers Dis, 2008. 13(2): p. 173–176.

    PubMed  CAS  Google Scholar 

  222. O’Connor, M.J., et al., Predictors of alcohol use prior to pregnancy recognition among township women in Cape Town, South Africa. Soc Sci Med, 2010. 72(1): p. 83–90.

    PubMed  Google Scholar 

  223. Castle, D.J., et al., Does social deprivation during gestation and early life predispose to later schizophrenia? Soc Psychiatry Psychiatr Epidemiol, 1993. 28(1): p. 1–4.

    PubMed  CAS  Google Scholar 

  224. Carpenter, E.M., Hox genes and spinal cord development. Dev Neurosci, 2002. 24(1): p. 24–34.

    PubMed  CAS  Google Scholar 

  225. Huang, J., et al., Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. The American journal of psychiatry, 2010. 167(10): p. 1254–1263.

    PubMed  Google Scholar 

  226. Argyropoulos, S.V., et al., Twins discordant for schizophrenia: psychopathology of the non-schizophrenic co-twins. Acta Psychiatrica Scandinavica, 2008. 118(3): p. 214–219.

    PubMed  CAS  Google Scholar 

  227. Bjornsson, H.T., M.D. Fallin, and A.P. Feinberg, An integrated epigenetic and genetic approach to common human disease. Trends Genet, 2004. 20(8): p. 350–358.

    PubMed  CAS  Google Scholar 

  228. Foley, D.L., et al., Prospects for epigenetic epidemiology. Am J Epidemiol, 2009. 169(4): p. 389–400.

    PubMed  Google Scholar 

  229. Wong, C.C., et al., A longitudinal study of epigenetic variation in twins. Epigenetics: official journal of the DNA Methylation Society, 2010. 5(6): p. 516–526.

    CAS  Google Scholar 

  230. Pidsley, R. and J. Mill, Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biological psychiatry, 2011. 69(2): p. 146–156.

    PubMed  Google Scholar 

  231. Andersen, S.L. and M.H. Teicher, Stress, sensitive periods and maturational events in adolescent depression. Trends in neurosciences, 2008. 31(4): p. 183–191.

    PubMed  CAS  Google Scholar 

  232. Davey Smith, G., et al., Genetic epidemiology and public health: hope, hype, and future prospects. Lancet, 2005. 366(9495): p. 1484–1498.

    PubMed  Google Scholar 

  233. McGorry, P.D., et al., Intervention in individuals at ultra-high risk for psychosis: a review and future directions. The Journal of clinical psychiatry, 2009. 70(9): p. 1206–1212.

    PubMed  Google Scholar 

  234. Albert, M.S., Cognitive and neurobiologic markers of early Alzheimer disease. Proc Natl Acad Sci U S A, 1996. 93(24): p. 13547–13551 *LHM: Journal available in the University Library, see the Library Catalogue for exact information *LHC: MG/SG T 0735:1963-… ISSN: 0027-8424.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart P. Rutten.

Additional information

This article is adapted from the book Chapter “Epigenetic Epidemiology”, by Bart PF Rutten & Jim van Os in the book “Epigenetic Epidemiology”, published by Springer Science + Business Media B.V., Editor Karin B. Michels, 2012, page 343-376. ISBN 978-94-007-2494-5, e-ISBN 978-94-007-2495-2, DOI 10.1007/978-94-007-2495.2 With kind permission from Springer Science+Business Media B.V.

About this article

Cite this article

Pishva, E., Kenis, G., Lesch, K.P. et al. Epigenetic epidemiology in psychiatry: A translational neuroscience perspective. Translat.Neurosci. 3, 196–212 (2012). https://doi.org/10.2478/s13380-012-0024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0024-y

Keywords

Navigation