Skip to main content
Log in

PTEN: A molecular target for neurodegenerative disorders

  • Review Article
  • Published:
Translational Neuroscience

Abstract

PTEN (phosphatase and tensin homologue deleted in chromosome 10) was first identified as a candidate tumour suppressor gene located on chromosome 10q23. It is considered as one of the most frequently mutated genes in human malignancies. Emerging evidence shows that the biological function of PTEN extends beyond its tumour suppressor activity. In the central nervous system PTEN is a crucial regulator of neuronal development, neuronal survival, axonal regeneration and synaptic plasticity. Furthermore, PTEN has been linked to the pathogenesis of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Recently increased attention has been focused on PTEN as a potential target for the treatment of brain injury and neurodegeneration. In this review we discuss the essential functions of PTEN in the central nervous system and its involvement in neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Datta S. R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery, Cell, 1997, 91, 231–241

    Article  PubMed  CAS  Google Scholar 

  2. Steck P. A., Pershouse M. A., Jasser S. A., Yung W.K., Lin H., Ligon A. H., et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers, Nat. Genet., 1997, 15, 356–362

    Article  PubMed  CAS  Google Scholar 

  3. Li D. M., Sun H., TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta, Cancer Res., 1997, 57, 2124–2129

    PubMed  CAS  Google Scholar 

  4. Liaw D., Marsh D. J., Li J., Dahia P. L., Wang S. I., Zheng Z., et al., Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome, Nat. Genet., 1997, 16, 64–67

    Article  PubMed  CAS  Google Scholar 

  5. Nelen M. R., van Staveren W. C., Peeters E. A., Hassel M. B., Gorlin R. J., Hamm H., et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease, Hum. Mol. Genet., 1997, 6, 1383–1387

    Article  PubMed  CAS  Google Scholar 

  6. Marsh D. J., Dahia P. L., Zheng Z., Liaw D., Parsons R., Gorlin R. J., et al., Germline mutations in PTEN are present in Bannayan-Zonana syndrome, Nat. Genet., 1997, 16, 333–334

    Article  PubMed  CAS  Google Scholar 

  7. Lee J. O., Yang H., Georgescu M. M., Di Cristofano A., Maehama T., Shi Y., et al. Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association, Cell, 1999, 99, 323–334

    Article  PubMed  CAS  Google Scholar 

  8. Wu X., Hepner K., Castelino-Prabhu S., Do D., Kaye M. B., Yuan X. J., et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2, Proc. Natl. Acad. Sci. USA, 2000, 97, 4233–4238

    Article  PubMed  CAS  Google Scholar 

  9. Georgescu M. M., Kirsch K. H., Akagi T., Shishido T., Hanafusa H., The tumor-suppressor activity of PTEN is regulated by its carboxylterminal region, Proc. Natl. Acad. Sci. USA, 1999, 96, 10182–10187

    Article  PubMed  CAS  Google Scholar 

  10. Vazquez F., Ramaswamy S., Nakamura N., Sellers W. R., Phosphorylation of the PTEN tail regulates protein stability and function, Mol. Cell. Biol., 2000, 20, 5010–5018

    Article  PubMed  CAS  Google Scholar 

  11. Maehama T., Dixon J. E., The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate, J. Biol. Chem., 1998, 273, 13375–13378

    Article  PubMed  CAS  Google Scholar 

  12. Cantley L. C., The phosphoinositide 3-kinase pathway, Science, 2002, 296, 1655–1657

    Article  PubMed  CAS  Google Scholar 

  13. Kapeller R., Cantley L. C., Phosphatidylinositol 3-kinase, Bioessays, 1994, 16, 565–576

    Article  PubMed  CAS  Google Scholar 

  14. Scheid M. P., Woodgett J. R., Unravelling the activation mechanisms of protein kinase B/Akt, FEBS Lett., 2003, 546, 108–112

    Article  PubMed  CAS  Google Scholar 

  15. Datta S. R., Brunet A., Greenberg M. E., Cellular survival: a play in three Akts, Genes Dev., 1999, 13, 2905–2927

    Article  PubMed  CAS  Google Scholar 

  16. Kandel E. S., Hay N., The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB, Exp. Cell Res., 1999, 253, 210–229

    Article  PubMed  CAS  Google Scholar 

  17. van Weeren P. C., de Bruyn K. M., de Vries-Smits A. M., van Lint J., Burgering B. M., Essential role for protein kinase B (PKB) in insulininduced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB, J. Biol. Chem., 1998, 273, 13150–13156

    Article  PubMed  Google Scholar 

  18. Kops G. J., Burgering B. M., Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling, J. Mol. Med. 1999, 77, 656–665

    Article  PubMed  CAS  Google Scholar 

  19. Cardone M. H., Roy N., Stennicke H. R., Salvesen G. S., Franke T. F., Stanbridge E., et al. Regulation of cell death protease caspase-9 by phosphorylation, Science, 1998, 282, 1318–1321

    Article  PubMed  CAS  Google Scholar 

  20. Kane L. P., Shapiro V. S., Stokoe D., Weiss A., Induction of NF-kappaB by the Akt/PKB kinase, Curr. Biol., 1999, 9, 601–604

    Article  PubMed  CAS  Google Scholar 

  21. Manning B. D., Cantley L. C., United at last: the tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling, Biochem. Soc. Trans., 2003, 31, 573–578

    Article  PubMed  CAS  Google Scholar 

  22. Laplante M., Sabatini D. M., mTOR signaling at a glance, J. Cell Sci., 2009, 122, 3589–3594

    Article  PubMed  CAS  Google Scholar 

  23. Wong E., Cuervo A. M., Autophagy gone awry in neurodegenerative diseases, Nat. Neurosci., 2010, 13, 805–811

    Article  PubMed  CAS  Google Scholar 

  24. Caccamo A., Majumder S., Deng J. J., Bai Y., Thornton F. B., Oddo S., Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability, J. Biol. Chem., 2009, 284, 27416–27424

    Article  PubMed  CAS  Google Scholar 

  25. Malagelada C., Jin Z. H., Jackson-Lewis V., Przedborski S., Greene L. A., Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease, J. Neurosci., 2010, 30, 1166–1175

    Article  PubMed  CAS  Google Scholar 

  26. Bove J., Martinez-Vicente M., Vila M., Fighting neurodegeneration with rapamycin: mechanistic insights, Nat. Rev. Neurosci., 2011, 12, 437–452

    Article  PubMed  CAS  Google Scholar 

  27. Tamura M., Gu J., Matsumoto K., Aota S., Parsons R., Yamada K. M., Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN, Science, 1998, 280, 1614–1617

    Article  PubMed  CAS  Google Scholar 

  28. Podsypanina K., Ellenson L. H., Nemes A., Gu J., Tamura M., Yamada K. M., et al., Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems, Proc. Natl. Acad. Sci. USA, 1999, 96, 1563–1568

    Article  PubMed  CAS  Google Scholar 

  29. Ning K., Miller L. C., Laidlaw H. A., Burgess L. A., Perera N. M., Downes C. P., et al., A novel leptin signalling pathway via PTEN inhibition in hypothalamic cell lines and pancreatic beta-cells, EMBO J., 2006, 25, 2377–2387

    Article  PubMed  CAS  Google Scholar 

  30. Ning K., Miller L. C., Laidlaw H. A., Watterson K. R., Gallagher J., Sutherland C., et al., Leptin-dependent phosphorylation of PTEN mediates actin restructuring and activation of ATP-sensitive K+ channels, J. Biol. Chem., 2009, 284, 9331–9340

    Article  PubMed  CAS  Google Scholar 

  31. Weng L. P., Smith W. M., Brown J. L., Eng C., PTEN inhibits insulinstimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex formation in a breast cancer model, Hum. Mol. Genet., 2001, 10, 605–616

    Article  PubMed  CAS  Google Scholar 

  32. Waite K. A., Eng C., Protean PTEN: form and function, Am. J. Hum. Genet., 2002, 70, 829–844

    Article  PubMed  CAS  Google Scholar 

  33. Lachyankar M. B., Sultana N., Schonhoff C. M., Mitra P., Poluha W., Lambert S., et al., A role for nuclear PTEN in neuronal differentiation, J. Neurosci., 2000, 20, 1404–1413

    PubMed  CAS  Google Scholar 

  34. Sano T., Lin H., Chen X., Langford L. A., Koul D., Bondy M. L., et al., Differential expression of MMAC/PTEN in glioblastoma multiforme: relationship to localization and prognosis, Cancer Res., 1999, 59, 1820–1824

    PubMed  CAS  Google Scholar 

  35. Goberdhan D. C., Paricio N., Goodman E. C., Mlodzik M., Wilson C., Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway, Genes Dev., 1999, 13, 3244–3258

    Article  PubMed  CAS  Google Scholar 

  36. Huang H., Potter C. J., Tao W., Li D. M., Brogiolo W., Hafen E., et al., PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development, Development, 1999, 126, 5365–5372

    PubMed  CAS  Google Scholar 

  37. Di Cristofano A., Pesce B., Cordon-Cardo C., Pandolfi P. P., Pten is essential for embryonic development and tumour suppression, Nat. Genet., 1998,19, 348–355

    Article  PubMed  Google Scholar 

  38. Suzuki A., de la Pompa J. L., Stambolic V., Elia A. J., Sasaki T., del Barco Barrantes I., et al., High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice, Curr. Biol., 1998, 8, 1169–1178

    Article  PubMed  CAS  Google Scholar 

  39. Vasconsuelo A., Pronsato L., Ronda A. C., Boland R., Milanesi L., Role of 17β-estradiol and testosterone in apoptosis, Steroids, 2011, 76, 1223–1231

    Article  PubMed  CAS  Google Scholar 

  40. Groszer M., Erickson R., Scripture-Adams D. D., Lesche R., Trumpp A., Zack J. A., et al., Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo, Science, 2001, 294, 2186–2189

    Article  PubMed  CAS  Google Scholar 

  41. Li L., Liu F., Salmonsen R. A., Turner T. K., Litofsky N. S., Di Cristofano A., et al., PTEN in neural precursor cells: regulation of migration, apoptosis, and proliferation, Mol. Cell. Neurosci., 2002, 20, 21–29

    Article  PubMed  CAS  Google Scholar 

  42. Marino S., Krimpenfort P., Leung C., van der Korput H. A. G. M., Trapman J., Camenisch I., et al., PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum, Development, 2002, 129, 3513–3522

    PubMed  CAS  Google Scholar 

  43. Backman S. A., Stambolic V., Suzuki A., Haight J., Elia A., Pretorius J., et al., Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease, Nat. Genet., 2001, 29, 396–403

    Article  PubMed  CAS  Google Scholar 

  44. Kwon C. H., Zhu X., Zhang J., Knoop L. L., Tharp R., Smeyne R. J., et al., Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease, Nat. Genet., 2001, 29, 404–411

    Article  PubMed  CAS  Google Scholar 

  45. Kyrylenko S., Roschier M., Korhonen P., Salminen A., Regulation of PTEN expression in neuronal apoptosis, Mol. Brain Res., 1999, 73, 198–202

    Article  PubMed  CAS  Google Scholar 

  46. Smith J. A., Zhang R., Varma A. K., Das A., Ray S. K., Banik N. L., Estrogen partially down-regulates PTEN to prevent apoptosis in VSC4.1 motoneurons following exposure to IFN-gamma, Brain Res., 2009, 1301, 163–170

    Article  PubMed  CAS  Google Scholar 

  47. Xu J., Yeon J. E., Chang H., Tison G., Chen G. J., Wands J., et al., Ethanol impairs insulin-stimulated neuronal survival in the developing brain: role of PTEN phosphatase, J. Biol. Chem., 2003, 278, 26929–26937

    Article  PubMed  CAS  Google Scholar 

  48. Gary D. S., Mattson M. P., PTEN regulates Akt kinase activity in hippocampal neurons and increases their sensitivity to glutamate and apoptosis, Neuromolecular Med., 2002, 2, 261–269

    Article  PubMed  CAS  Google Scholar 

  49. Delgado-Esteban M., Martin-Zanca D., Andres-Martin L., Almeida A., Bolanos J. P., Inhibition of PTEN by peroxynitrite activates the phosphoinositide-3-kinase/Akt neuroprotective signaling pathway, J. Neurochem., 2007, 102, 194–205

    Article  PubMed  CAS  Google Scholar 

  50. Zhao H., Shimohata T., Wang J. Q., Sun G., Schaal D. W., Sapolsky R. M., et al., Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats, J. Neurosci., 2005, 25, 9794–9806

    Article  PubMed  CAS  Google Scholar 

  51. Zhang Q.-G., Wu D.-N., Han D., Zhang G.-Y., Critical role of PTEN in the coupling between PI3K/Akt and JNK1/2 signaling in ischemic brain injury, FEBS Lett., 2007, 581, 495–505

    Article  PubMed  CAS  Google Scholar 

  52. Ning K., Pei L., Liao M., Liu B., Zhang Y., Jiang W., et al., Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN, J. Neurosci. 2004, 24, 4052–4060

    Article  PubMed  CAS  Google Scholar 

  53. Liu B., Li L., Zhang Q., Chang N., Wang D., Shan Y., et al., Preservation of GABAA receptor function by PTEN inhibition protects against neuronal death in ischemic stroke, Stroke, 2010, 41, 1018–1026

    Article  PubMed  CAS  Google Scholar 

  54. Cheung N. S., Choy M. S., Halliwell B., Teo T. S., Bay B. H., Lee A. Y. W., et al., Lactacystin-induced apoptosis of cultured mouse cortical neurons is associated with accumulation of PTEN in the detergent-resistant membrane fraction, Cell. Mol. Life Sci., 2004, 61, 1926–1934

    Article  PubMed  CAS  Google Scholar 

  55. Choy M. S., Bay B. H., Cheng H.-C., Cheung N. S., PTEN is recruited to specific microdomains of the plasma membrane during lactacystininduced neuronal apoptosis, Neurosci. Lett., 2006, 405, 120–125

    Article  PubMed  CAS  Google Scholar 

  56. Zhang X., Li F., Bulloj A., Zhang Y.-W., Tong G., Zhang Z., et al., Tumorsuppressor PTEN affects tau phosphorylation, aggregation, and binding to microtubules, FASEB J., 2006, 20, 1272–1274

    Article  PubMed  CAS  Google Scholar 

  57. Zhu Y., Hoell P., Ahlemeyer B., Sure U., Bertalanffy H., Krieglstein J., Implication of PTEN in production of reactive oxygen species and neuronal death in in vitro models of stroke and Parkinson’s disease, Neurochem. Int., 2007, 50, 507–516

    Article  PubMed  CAS  Google Scholar 

  58. Park K. K., Liu K., Hu Y., Smith P. D., Wang C., Cai B., et al., Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway, Science, 2008, 322, 963–966

    Article  PubMed  CAS  Google Scholar 

  59. Liu K., Lu Y., Lee J. K., Samara R., Willenberg R., Sears-Kraxberger I., et al., PTEN deletion enhances the regenerative ability of adult corticospinal neurons, Nat. Neurosci., 2010, 13, 1075–1081

    Article  PubMed  CAS  Google Scholar 

  60. Jiang H., Guo W., Liang X., Rao Y., Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators, Cell, 2005, 120, 123–135

    PubMed  CAS  Google Scholar 

  61. Arevalo M.-A., Rodriguez-Tebar A., Activation of casein kinase II and inhibition of phosphatase and tensin homologue deleted on chromosome 10 phosphatase by nerve growth factor/p75NTR inhibit glycogen synthase kinase-3beta and stimulate axonal growth, Mol. Biol. Cell, 2006, 17, 3369–3377

    Article  PubMed  CAS  Google Scholar 

  62. Sun F., Park K. K., Belin S., Wang D., Lu T., Chen G., et al., Sustained axon regeneration induced by co-deletion of PTEN and SOCS3, Nature, 2011, 480, 372–375

    Article  PubMed  CAS  Google Scholar 

  63. Leibinger M., Andreadaki A., Fischer D., Role of mTOR in neuroprotection and axon regeneration after inflammatory stimulation, Neurobiol. Dis., 2012, 46, 314–324

    Article  PubMed  CAS  Google Scholar 

  64. Ning K., Drepper C., Valori C. F., Ahsan M., Wyles M., Higginbottom A., et al., PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons, Hum. Mol. Genet., 2010, 19, 3159–3168

    Article  PubMed  CAS  Google Scholar 

  65. Perandones C., Costanzo R. V., Kowaljow V., Pivetta O. H., Carminatti H., Radrizzani M., Correlation between synaptogenesis and the PTEN phosphatase expression in dendrites during postnatal brain development, Mol. Brain Res., 2004, 128, 8–19

    Article  PubMed  CAS  Google Scholar 

  66. Fraser M. M., Bayazitov I. T., Zakharenko S. S., Baker S. J., Phosphatase and tensin homolog, deleted on chromosome 10 deficiency in brain causes defects in synaptic structure, transmission and plasticity, and myelination abnormalities, Neuroscience, 2008, 151, 476–488

    Article  PubMed  CAS  Google Scholar 

  67. Xiong Q., Oviedo H. V., Trotman L. C., Zador A. M., PTEN regulation of local and long-range connections in mouse auditory cortex, J. Neurosci., 2012, 32, 1643–1652

    Article  PubMed  CAS  Google Scholar 

  68. Grundke-Iqbal I., Iqbal K., Tung Y. C., Quinlan M., Wisniewski H. M., Binder L. I., Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA, 1986, 83, 4913–4917

    Article  PubMed  CAS  Google Scholar 

  69. Stein T. D., Johnson J. A., Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways, J. Neuroscience, 2002, 22, 7380–7388

    CAS  Google Scholar 

  70. Wei W., Wang X., Kusiak J. W., Signaling events in amyloid betapeptide-induced neuronal death and insulin-like growth factor I protection, J. Biol. Chem., 2002, 277, 17649–17656

    Article  PubMed  CAS  Google Scholar 

  71. Hanger D. P., Hughes K., Woodgett J. R., Brion J. P., Anderton B. H., Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase, Neurosci. Lett., 1992, 147, 58–62

    Article  PubMed  CAS  Google Scholar 

  72. Mandelkow E. M., Drewes G., Biernat J., Gustke N., Van Lint J., Vandenheede J. R., et al., Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau, FEBS Lett., 1992, 314, 315–321

    Article  PubMed  CAS  Google Scholar 

  73. Lovestone S., Reynolds C. H., Latimer D., Davis D. R., Anderton B. H., Gallo J. M., et al., Alzheimer’s disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells, Curr. Biol., 1994, 4, 1077–1086

    Article  PubMed  CAS  Google Scholar 

  74. Myers A., Holmans P., Marshall H., Kwon J., Meyer D., Ramic D., et al., Susceptibility locus for Alzheimer’s disease on chromosome 10, Science, 2000, 290, 2304–2305

    Article  PubMed  CAS  Google Scholar 

  75. Hamilton G., Samedi F., Knight J., Archer N., Foy C., Walter S., et al., Polymorphisms in the phosphate and tensin homolog gene are not associated with late-onset Alzheimer’s disease, Neurosci. Lett., 2006, 401, 77–80

    Article  PubMed  CAS  Google Scholar 

  76. Griffin R. J., Moloney A., Kelliher M., Johnston J. A., Ravid R., Dockery P., et al., Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology, J. Neurochem., 2005, 93, 105–117

    Article  PubMed  CAS  Google Scholar 

  77. Kwak Y. D., Ma T., Diao S, Zhang X., Chen Y., Hsu J., et al., NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration, Mol. Neurodegener., 2010, 10, 49

    Article  CAS  Google Scholar 

  78. Sonoda Y., Mukai H., Matsuo K., Takahashi M., Ono Y., Maeda K., et al., Accumulation of tumor-suppressor PTEN in Alzheimer neurofibrillary tangles, Neurosci. Lett., 2010, 471, 20–24

    Article  PubMed  CAS  Google Scholar 

  79. Kerr F., Rickle A., Nayeem N., Brandner S., Cowburn R. F., Lovestone S., PTEN, a negative regulator of PI3 kinase signalling, alters tau phosphorylation in cells by mechanisms independent of GSK-3, FEBS Lett., 2006, 580, 3121–3128

    Article  PubMed  CAS  Google Scholar 

  80. Rickle A., Bogdanovic N., Volkmann I., Zhou X., Pei J.-J., Winblad B., et al., PTEN levels in Alzheimer’s disease medial temporal cortex, Neurochem. Int., 2006, 48, 114–123

    Article  PubMed  CAS  Google Scholar 

  81. Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, 1993, 362, 59–62 [Erratum appears in Nature, 1993, 364, 362]

    Article  PubMed  CAS  Google Scholar 

  82. Sathasivam S., Shaw P. J., Apoptosis in amyotrophic lateral sclerosis—what is the evidence?, Lancet Neurol., 2005, 4, 500–509

    Article  PubMed  CAS  Google Scholar 

  83. Kiryu S., Morita N., Ohno K., Maeno H., Kiyama H., Regulation of mRNA expression involved in Ras and PKA signal pathways during rat hypoglossal nerve regeneration, Mol. Brain Res., 1995, 29, 147–156

    Article  PubMed  CAS  Google Scholar 

  84. Ito Y., Sakagami H., Kondo H., Enhanced gene expression for phosphatidylinositol 3-kinase in the hypoglossal motoneurons following axonal crush, Mol. Brain Res., 1996, 37, 329–332

    Article  PubMed  CAS  Google Scholar 

  85. Namikawa K., Honma M., Abe K., Takeda M., Mansur K., Obata T., et al., Akt/protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration, J. Neurosci., 2000, 20, 2875–2886

    PubMed  CAS  Google Scholar 

  86. Newbern J., Taylor A., Robinson M., Li L., Milligan C. E., Decreases in phosphoinositide-3-kinase/Akt and extracellular signal-regulated kinase 1/2 signaling activate components of spinal motoneuron death, J. Neurochem., 2005, 94, 1652–1665

    Article  PubMed  CAS  Google Scholar 

  87. Lunn J. S., Sakowski S. A., Kim B., Rosenberg A. A., Feldman E. L., Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration, Dev. Neurobiol., 2009, 69, 871–884

    Article  PubMed  CAS  Google Scholar 

  88. Tolosa L., Mir M., Olmos G., Llado J., Vascular endothelial growth factor protects motoneurons from serum deprivation-induced cell death through phosphatidylinositol 3-kinase-mediated p38 mitogen-activated protein kinase inhibition, Neuroscience, 2009, 158, 1348–1355

    Article  PubMed  CAS  Google Scholar 

  89. Tolosa L., Mir M., Asensio V. J., Olmos G., Llado J., Vascular endothelial growth factor protects spinal cord motoneurons against glutamateinduced excitotoxicity via phosphatidylinositol 3-kinase, J. Neurochem., 2008, 105, 1080–1090

    Article  PubMed  CAS  Google Scholar 

  90. Kaspar B. K., Llado J., Sherkat N., Rothstein J. D., Gage F. H., Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model, Science, 2003, 301, 839–842

    Article  PubMed  CAS  Google Scholar 

  91. Vincent A. M., Mobley B. C., Hiller A., Feldman E. L., IGF-I prevents glutamate-induced motor neuron programmed cell death, Neurobiol. Dis., 2004, 16, 407–416

    Article  PubMed  CAS  Google Scholar 

  92. Manabe Y., Nagano I., Gazi M. S. A., Murakami T., Shiote M., Shoji M., et al., Adenovirus-mediated gene transfer of glial cell line-derived neurotrophic factor prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis, Apoptosis, 2002, 7, 329–334

    Article  PubMed  CAS  Google Scholar 

  93. Lim E., Lee S., Li E., Kim Y., Park S., Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicity via ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3beta pathways, Exp. Neurol., 2011, 230, 114–122

    Article  PubMed  CAS  Google Scholar 

  94. Kirby J., Ning K., Ferraiuolo L., Heath P. R., Ismail A., Kuo S.-W., et al., Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis, Brain, 2011, 134, 506–517

    Article  PubMed  Google Scholar 

  95. Wagey R., Pelech S. L., Duronio V., Krieger C., Phosphatidylinositol 3-kinase: increased activity and protein level in amyotrophic lateral sclerosis, J. Neurochem., 1998, 71, 716–722

    Article  PubMed  CAS  Google Scholar 

  96. Dewil M., Lambrechts D., Sciot R., Shaw P. J., Ince P. G., Robberecht W., et al., Vascular endothelial growth factor counteracts the loss of phospho-Akt preceding motor neurone degeneration in amyotrophic lateral sclerosis, Neuropathol. Appl. Neurobiol., 2007, 33, 499–509

    Article  PubMed  CAS  Google Scholar 

  97. Warita H., Manabe Y., Murakami T., Shiro Y., Nagano I., Abe K., Early decrease of survival signal-related proteins in spinal motor neurons of presymptomatic transgenic mice with a mutant SOD1 gene, Apoptosis, 2001, 6, 345–352

    Article  PubMed  CAS  Google Scholar 

  98. Nagano I., Murakami T., Manabe Y., Abe K., Early decrease of survival factors and DNA repair enzyme in spinal motor neurons of presymptomatic transgenic mice that express a mutant SOD1 gene, Life Sci., 2002, 72, 541–548

    Article  PubMed  CAS  Google Scholar 

  99. Schapira A. H., Jenner P., Etiology and pathogenesis of Parkinson’s disease, Mov. Disord., 2011, 26, 1049–1055

    Article  PubMed  Google Scholar 

  100. Chesselet M.-F., Richter F., Modelling of Parkinson’s disease in mice, Lancet Neurol., 2011, 10, 1108–1118

    Article  PubMed  Google Scholar 

  101. Valente E. M., Abou-Sleiman P. M., Caputo V., Muqit M. M. K., Harvey K., Gispert S., et al., Hereditary early-onset Parkinson’s disease caused by mutations in PINK1, Science, 2004, 304, 1158–1160

    Article  PubMed  CAS  Google Scholar 

  102. Greene L. A., Levy O., Malagelada C., Akt as a victim, villain and potential hero in Parkinson’s disease pathophysiology and treatment, Cell. Mol. Neurobiol., 31, 969–978

  103. Timmons S., Coakley M. F., Moloney A. M., O’ Neill C., Akt signal transduction dysfunction in Parkinson’s disease, Neurosci. Lett., 2009, 467, 30–35

    Article  PubMed  CAS  Google Scholar 

  104. Chen G., Bower K. A., Ma C., Fang S., Thiele C. J., Luo J., Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamineinduced neuronal death, FASEB J., 2004, 18, 1162–1164

    Article  PubMed  CAS  Google Scholar 

  105. Ries V., Henchcliffe C., Kareva T., Rzhetskaya M., Bland R., During M. J., et al., Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson’s disease, Proc. Natl. Acad. Sci. USA, 2006, 103, 18757–18762

    Article  PubMed  CAS  Google Scholar 

  106. Goedert M., Familial Parkinson’s disease. The awakening of alphasynuclein, Nature, 1997, 388, 232–233

    Article  CAS  Google Scholar 

  107. Heintz N., Zoghbi H., alpha-Synuclein — a link between Parkinson and Alzheimer diseases? Nat. Genet., 1997, 16, 325–327

    Article  PubMed  CAS  Google Scholar 

  108. Hashimoto M., Bar-On P., Ho G., Takenouchi T., Rockenstein E., Crews L., et al., Beta-synuclein regulates Akt activity in neuronal cells. A possible mechanism for neuroprotection in Parkinson’s disease, J. Biol. Chem., 2004, 279, 23622–23629

    Article  PubMed  CAS  Google Scholar 

  109. Shimoke K., Chiba H., Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson’s disease, J. Neurosci. Res., 2001, 63, 402–409

    Article  PubMed  CAS  Google Scholar 

  110. Cookson M. R., Molecules that cause or prevent Parkinson’s disease, PLoS Biol., 2004, 2, e401

    Article  PubMed  CAS  Google Scholar 

  111. Kim R. H., Peters M., Jang Y., Shi W., Pintilie M., Fletcher G. C., et al., DJ-1, a novel regulator of the tumor suppressor PTEN, Cancer Cell, 2005, 7, 263–273

    Article  PubMed  CAS  Google Scholar 

  112. Yang Y., Gehrke S., Haque M. E., Imai Y., Kosek J., Yang L., et al., Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling, Proc. Natl. Acad. Sci. USA, 2005, 102, 13670–13675

    Article  PubMed  CAS  Google Scholar 

  113. Diaz-Ruiz O., Zapata A., Shan L., Zhang Y., Tomac A. C., Malik N., et al., Selective deletion of PTEN in dopamine neurons leads to trophic effects and adaptation of striatal medium spiny projecting neurons, PLoS One, 2009, 4, e7027

    Article  PubMed  CAS  Google Scholar 

  114. Domanskyi A., Geissler C., Vinnikov I. A., Alter H., Schober A., Vogt M. A., et al., Pten ablation in adult dopaminergic neurons is neuroprotective in Parkinson’s disease models, FASEB J., 2011, 25, 2898–2910

    Article  PubMed  CAS  Google Scholar 

  115. Ji S.-P., Zhang Y., Van Cleemput J., Jiang W., Liao M., Li L., et al., Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse, Nat. Med., 2006, 12, 324–329

    Article  PubMed  CAS  Google Scholar 

  116. Marsh D. J., Roth S., Lunetta K. L., Hemminki A., Dahia P. L., Sistonen P., et al., Exclusion of PTEN and 10q22–24 as the susceptibility locus for juvenile polyposis syndrome, Cancer Res., 1997, 57, 5017–5021

    PubMed  CAS  Google Scholar 

  117. Chang N., El-Hayek Y. H., Gomez E., Wan Q., Phosphatase PTEN in neuronal injury and brain disorders, Trends Neurosci., 2007, 30, 581–586

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimoun Azzouz.

About this article

Cite this article

Ismail, A., Ning, K., Al-Hayani, A. et al. PTEN: A molecular target for neurodegenerative disorders. Translat.Neurosci. 3, 132–142 (2012). https://doi.org/10.2478/s13380-012-0018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0018-9

Keywords

Navigation