Translational Neuroscience

, Volume 3, Issue 1, pp 36–40 | Cite as

Spherical harmonic analysis of cortical complexity in autism and dyslexia

  • Emily L. Williams
  • Ayman El-Baz
  • Matthew Nitzken
  • Andrew E. Switala
  • Manuel F. CasanovaEmail author
Research Article


Alterations in gyral form and complexity have been consistently noted in both autism and dyslexia. In this present study, we apply spherical harmonics, an established technique which we have exapted to estimate surface complexity of the brain, in order to identify abnormalities in gyrification between autistics, dyslexics, and controls. On the order of absolute surface complexity, autism exhibits the most extreme phenotype, controls occupy the intermediate ranges, and dyslexics exhibit lesser surface complexity. Here, we synthesize our findings which demarcate these three groups and review how factors controlling neocortical proliferation and neuronal migration may lead to these distinctive phenotypes.


Cerebral cortex Gyral window Gyrification index Minicolumn Neurogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Braendgaard H., Evans S.M., Howard C.V., Gundersen H.J., The total number of neurons in the human neocortex unbiasedly estimated using optical disectors, J. Microsc., 1990, 157, 285–304PubMedCrossRefGoogle Scholar
  2. [2]
    Rakic P., A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution, Trends Neurosci., 1995, 18, 383–388PubMedCrossRefGoogle Scholar
  3. [3]
    Cherniak C., Component placement optimization in the brain, J. Neurosci., 1994, 14, 2418–2427PubMedGoogle Scholar
  4. [4]
    Egghe L., Lafouge T., On the relation between the Maximum Entropy Principle and the Principle of Least Effort, Math. Comput. Modeling, 2006, 43, 1–8CrossRefGoogle Scholar
  5. [5]
    Withers G.S., James C.D., Kingman C.E., Craighead H.G., Banker G.A. Effects of substrate geometry on growth cone behavior and axon branching, J. Neurobiol., 2006, 66, 1183–1194PubMedCrossRefGoogle Scholar
  6. [6]
    Branco T., Staras, K., The probability of neurotransmitter release: Variability and feedback control at single synapses, Nat. Rev. Neurosci., 2009, 10, 373–383PubMedCrossRefGoogle Scholar
  7. [7]
    Williams E.L., Casanova M.F., Autism and dyslexia: A spectrum of cognitive styles as defined by minicolumnar morphometry, Med. Hypotheses, 2010, 74, 59–62PubMedCrossRefGoogle Scholar
  8. [8]
    Hazlett H.C., Poe M.D., Gerig G., Styner M., Chappell C., Smith R.G., et al., Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years, Arch. Gen. Psychiatry, 2011, 68, 467–476PubMedCrossRefGoogle Scholar
  9. [9]
    Casanova M.F., Buxhoeveden D.P., Cohen M., Switala A.E., Roy E., Minicolumnar pathology in dyslexia, Ann. Neurol., 2002, 52, 108–110PubMedCrossRefGoogle Scholar
  10. [10]
    Casanova M.F., Buxhoeveden D., Switala A.E., Roy E., Minicolumnar pathology in autism, Neurology, 2002, 58, 428–432PubMedGoogle Scholar
  11. [11]
    Prothero J.W., Sundsten J.W., Folding of the cerebral cortex in mammals, Brain Behav. Evol., 1984, 24, 152–167PubMedCrossRefGoogle Scholar
  12. [12]
    Casanova M.F., El-Baz A., Mott M., Mannheim G., Hassan H., Fahmi R., et al., Reduced gyral window and corpus callosum size in autism: Possible macroscopic correlates of a minicolumnopathy, J. Autism Dev. Disord., 2009, 39, 751–764PubMedCrossRefGoogle Scholar
  13. [13]
    Casanova M.F., El-Baz A.S., Giedd J., Rumsey J.M., Switala A.E., Increased white matter gyral depth in dyslexia: Implications for corticocortical connectivity, J. Autism Dev. Disord., 2010, 40, 21–29PubMedCrossRefGoogle Scholar
  14. [14]
    Casanova M.F., Farag A., El-Baz A., Mott M., Hassan H., Fahmi R., et al., Abnormalities of the gyral window in autism: A macroscopic correlate to a putative minicolumnopathy, J. Spec. Educ. Rehabil., 2007, 2006, 85–101Google Scholar
  15. [15]
    Casanova M.F., Araque J., Giedd J., Rumsey J.M., Reduced brain size and gyrification in the brains of dyslexic patients, J. Child Neurol., 2004, 19, 275–281PubMedCrossRefGoogle Scholar
  16. [16]
    Casanova M.F., El-Baz A., Elnakib A., Giedd J., Rumsey J.M., Williams E.L., Switala A.E., Corpus callosum shape analysis with application to dyslexia, Transl. Neurosci., 2010, 1, 124–130CrossRefGoogle Scholar
  17. [17]
    Shaywitz S.E., Dyslexia. Sci. Am., 1996, 275, 88–104Google Scholar
  18. [18]
    Lyon G.R., Shaywitz B.A., Defining dyslexia, comorbidity, teachers’ knowledge of language and reading: A definition of dyslexia, Ann. Dyslexia, 2003, 53, 1–14CrossRefGoogle Scholar
  19. [19]
    Galaburda A.M., Developmental dyslexia: A multilevel syndrome. Dyslexia, 1999, 5, 183–191CrossRefGoogle Scholar
  20. [20]
    American Psychiatric Association. (2010). Proposed revision: Autism Spectrum Disorder. American Psychiatric Association: DSM-5 Development, retrieved on 06/28/2011 from ProposedRevisions/Pages/proposedrevision.aspx?rid=94
  21. [21]
    Ricketts J., Research review: Reading comprehension in developmental disorders of language and communication, J. Child Psychol. Psychiatry, 2011, 52, 1111–1123PubMedCrossRefGoogle Scholar
  22. [22]
    Kochunov P., Castro C., Davis D., Dudley D., Brewer J., Zhang Y., et al., Mapping primary gyrogenesis during fetal development in primate brains: High-resolution in utero structural MRI of fetal brain development in pregnant baboons, Frontiers Neurosci., 2010, 4, 20Google Scholar
  23. [23]
    Mares V., Lodin Z., The cellular kinetics of the developing mouse cerebellum, II: The function of the external granular layer in the process of gyrification, Brain Res., 1970, 23, 343–352PubMedCrossRefGoogle Scholar
  24. [24]
    Armstrong E., Schleicher A., Omran H., Curtis M., Zilles K., The ontogeny of human gyrification, Cereb. Cortex, 1995, 5, 56–63PubMedCrossRefGoogle Scholar
  25. [25]
    Rajagopalan V., Scott J., Habas P.A., Kim K., Corbett-Detig J., Rousseau F., et al., Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero, J. Neurosci., 2011, 31, 2878–2887PubMedCrossRefGoogle Scholar
  26. [26]
    Rumsey J.M., Casanova M., Mannheim G.B., Patronas N., DeVaughn N., Hamburger S.D., et al., Corpus callosum morphology, as measured with MRI, in dyslexic men, Biol. Psychiatry, 1996, 39, 769–775PubMedCrossRefGoogle Scholar
  27. [27]
    Eckert M.A., Leonard C.M., Richards T.L., Aylwayd E.H., Thomson J., Berninger V.W., Anatomical correlates of dyslexia: Frontal and cerebellar findings, Brain, 2003, 126, 482–494PubMedCrossRefGoogle Scholar
  28. [28]
    Hardan A.Y., Muddasani S., Vemulappali M., Keshavan M.S., Minshew N.J., An MRI study of increased cortical thickness in autism, Am. J. Psychiatry, 2006, 163, 1290–1292PubMedCrossRefGoogle Scholar
  29. [29]
    Herbert M.R., Ziegler D.A., Makris N., Filipek P.A., Kemper T.L., Normandin, J.J., et al., Localization of white matter volume increase in autism and developmental language disorder, Ann. Neurol., 2004, 55, 530–540PubMedCrossRefGoogle Scholar
  30. [30]
    Galaburda A.M., Shermam G.F., Rosen G.D., Aboitiz F., Geschwind N., Developmental dyslexia: Four consecutive patients with cortical anomalies, Ann. Neurol., 1985, 18, 222–233PubMedCrossRefGoogle Scholar
  31. [31]
    Nordahl C.W., Dierker D., Mostafavi I., Schumann C.M., Rivera S.M., Amaral D.G., et al., Cortical folding abnormalities in autism revealed by surface-based morphometry, J. Neurosci., 2007, 27, 11725–11735PubMedCrossRefGoogle Scholar
  32. [32]
    Wegiel J., Kuchna I., Nowicki K., Imaki H., Wegiel J., Marchi E., et al., The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes, Acta Neuropathol., 2010, 119, 755–770PubMedCrossRefGoogle Scholar
  33. [33]
    Curatolo P., Porfirio M.C., Manzi B., Seri S. Autism in tuberous sclerosis, Eur. J. Pediatr. Neurol., 2004, 8, 327–332CrossRefGoogle Scholar
  34. [34]
    Butler M.G., Dasouki M.J., Zhou X.P., Talebizadeh Z., Brown M., Takahashi T.N., et al., Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumor suppressor gene mutations, J. Med. Genet., 2005, 42, 318–321PubMedCrossRefGoogle Scholar
  35. [35]
    Paracchini S., Thomas A., Castro S., Lai C., Paramasivam M., Wang Y., et al., The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration, Hum. Mol. Genet., 2006, 15, 1659–1666PubMedCrossRefGoogle Scholar
  36. [36]
    Dahdouh F., Anthoni H., Tapia-Páez I., Peyrar-Janvid M., Schulte-Körne G., Warnke A., et al., Further evidence for DYX1C1 as a susceptibility factor for dyslexia, Psychiatr. Genet., 2006, 19(2), 59–63CrossRefGoogle Scholar
  37. [37]
    Rosen G.D., Bai J., Wang Y., Fiondella C.G., Threlkeld S.W., LoTurco J.J., et al., Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations, Cereb. Cortex, 2007, 17, 2562–2572PubMedCrossRefGoogle Scholar
  38. [38]
    Hevner R.F., From radial glia to pyramidal-projection neuron: Transcription factor cascades in cerebral cortex development, Mol. Neurobiol., 2006, 33, 33–50PubMedCrossRefGoogle Scholar
  39. [39]
    Williams E.L., Casanova M.F., Above genetics: Lessons from cerebral development in autism, Transl. Neurosci., 2011, 2, 106–120CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Emily L. Williams
    • 1
  • Ayman El-Baz
    • 2
  • Matthew Nitzken
    • 2
  • Andrew E. Switala
    • 3
  • Manuel F. Casanova
    • 3
    Email author
  1. 1.Department of Anatomical Sciences and NeurobiologyUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of BioengineeringUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of Psychiatry and Behavioral SciencesUniversity of LouisvilleLouisvilleUSA

Personalised recommendations