Skip to main content
Log in

Similarities between cortical “up” states during slow wave sleep and wakefulness: the implications for schizophrenia

  • Communication
  • Published:
Translational Neuroscience

Abstract

Negative and positive symptoms are defining features of schizophrenia. This illness is commonly associated with a number of cognitive and affective deficits as well as with some more specific sleep abnormalities. It has been previously proposed that psychosis and positive symptoms in schizophrenia could be understood as disorders of internal brain dynamics. This proposed disordered network interplay might be particularly displayed during sleep when modulation by the senses is at the minimum. It is argued here that sleep abnormalities in schizophrenia inform our understanding of the pathomechanisms involved in psychosis. More specifically, sleep spindle initiation in NREM sleep and the preparation of sensory pathways for upcoming motor actions during wakefulness may share a common mechanism, and this shared mechanism is suggested to be impaired in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Vukadinovic Z., Sleep abnormalities in schizophrenia may suggest impaired trans-thalamic cortico-cortical communication: towards a dynamic model of the illness, Eur. J. Neurosci., 2011, 34, 1031–1039

    Article  PubMed  Google Scholar 

  2. Feinberg I., Corollary discharge, hallucinations and dreaming, Schizophr. Bull., 2011, 37, 1–3

    Article  PubMed  Google Scholar 

  3. Destexhe A., Intracellular and computational evidence for a dominant role of internal network activity in cortical computations, Curr. Opin. Neurobiol., 2011, 21, 717–725

    Article  PubMed  CAS  Google Scholar 

  4. Vukadinovic Z., Rosenzweig I., Abnormalities in thalamic neurophysiology in schizophrenia: could psychosis be a result of potassium channel dysfunction?, Neurosci. Biobehav. Rev., 2012, 36, 960–968

    Article  PubMed  CAS  Google Scholar 

  5. Destexhe A., Hughes S. W., Rudolph M., Crunelli V., Are corticothalamic UP states fragments of wakefulness? Trends Neurosci., 2007, 30, 334–342

    Article  PubMed  CAS  Google Scholar 

  6. Huffaker S. J., Chan J., Nicodemus K. K., Sambataro F., Yang F., Mattay V., et al., Primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia, Nat. Med., 2009, 15, 509–518

    Article  PubMed  CAS  Google Scholar 

  7. Mölle M., Marshall L., Gais S., Born J., Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep, J. Neurosci., 2002, 22, 10941–10947

    PubMed  Google Scholar 

  8. Steriade M., Neuronal substrates of sleep and epilepsy, Cambridge University Press, Cambridge, UK, 2003

    Google Scholar 

  9. Bazhenov M., Timofeev I., Steriade M., Sejnowski T., Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks, J. Neurophysiol., 2000, 84, 1076–1087

    PubMed  CAS  Google Scholar 

  10. Sherman S. M., Guillery R. W., Exploring the thalamus and its role in cortical function, 2nd ed., The MIT Press, Cambridge, USA, 2006

    Google Scholar 

  11. Kim U., Sanchez-Vives M. V., McCormick D. A., Functional dynamics of GABAergic inhibition in the thalamus, Science, 1997, 278, 130–134

    Article  PubMed  CAS  Google Scholar 

  12. Steriade M., Grouping of brain rhythms in corticothalamic systems, Neuroscience, 2006, 137, 1087–1106

    Article  PubMed  CAS  Google Scholar 

  13. Sherman S. M., Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci., 2001, 24, 122–126

    Article  PubMed  CAS  Google Scholar 

  14. Fuentealba P., Timofeev I., Steriade M., Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus, Proc. Natl. Acad. Sci. USA, 2004, 101, 9816–9821

    Article  PubMed  CAS  Google Scholar 

  15. Neto F. L., Schadrack J., Berthele A., Zieglgänsberger W., Tölle T. R., Castro-Lopez J. M., Differential distribution of metabotropic glutamate receptors subty pe mRNAs in the thalamus of the rat, Brain Res., 2000, 854, 93–105

    Article  Google Scholar 

  16. Ohishi H., Shigemoto R., Nakanishi S., Mizuno N., Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study, J. Comp. Neurol., 1993, 335, 252–266

    Article  PubMed  CAS  Google Scholar 

  17. Coutinho V., Knöpfel T., Book review: metabotropic glutamate receptors: electrical and chemical signaling properties, Neuroscientist, 2002, 8, 551–561

    Article  PubMed  CAS  Google Scholar 

  18. Cox C. L., Sherman S. M., Glutamate inhibits thalamic reticular neurons, J. Neurosci., 1999, 19, 6694–6699

    PubMed  CAS  Google Scholar 

  19. Alexander G. M., Godwin D. W., Unique presynaptic and postsynaptic roles of group II metabotropic glutamate receptors in the modulation of thalamic network activity, Neurosci., 2006, 141, 501–513

    Article  CAS  Google Scholar 

  20. Govindaiah G., Cox C. L., Metabotropic glutamate receptors differentially regulate GABAergic inhibition in thalamus, J. Neurosci., 2006, 26, 13443–13453

    Article  PubMed  CAS  Google Scholar 

  21. Turner J. P., Salt T. E., Group II and III metabotropic glutamate receptors and the control of nucleus reticularis thalami input to rat thalamocortical neurones in vitro, Neuroscience, 2003, 122, 459–469

    Article  PubMed  CAS  Google Scholar 

  22. Ferrarelli F., Huber R., Peterson M. J., Massimini M., Murphy M., Riedner B. A. et al., Reduced sleep spindle activity in schizophrenia patients, Am. J. Psychiatry, 2007, 164, 483–492

    Article  PubMed  Google Scholar 

  23. Ferrarelli F., Peterson M. J., Sarasso S., Riedner B. A., Murphy M. J., Benca R. M., et al., Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles, Am. J. Psychiatry, 2010, 167, 1339–1348

    Article  PubMed  Google Scholar 

  24. Manoach D. S., Thakkar K. N., Stroynowski E., Ely A., McKinley S. K., Wamsley E. et al., Reduced overnight consolidation of procedural learning in chronic medicated schizophrenia is related to specific sleep stages, J. Psychiatr. Res., 2010, 44, 112–120

    Article  PubMed  Google Scholar 

  25. Seeck-Hirschner M., Baier P. C., Sever S., Buschbacher A., Aldenhoff J. B., Göder R., Effects of daytime naps on procedural and declarative memory in patients with schizophrenia, J. Psychiatr. Res., 2009, 44, 42–47

    Article  PubMed  Google Scholar 

  26. Wamsley E. J., Tucker M. A., Schinn A. K., Ono K. E., McKinley S. K., Ely A. V. et al., Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation?, Biol. Psychiatry, 2012, 71, 154–161

    Article  PubMed  Google Scholar 

  27. Hiatt J. F., Floyd T. C., Katz P. H., Feinberg I., Further evidence of abnormal non-rapid-eye movement sleep in schizophrenia, Arch. Gen. Psychiatry, 1985, 42, 797–802

    Article  PubMed  CAS  Google Scholar 

  28. Poulin J., Daoust A. M., Forest G., Stip E., Godbout R., Sleep architecture and its clinical correlates in first episode and neuroleptic-naïve patients with schizophrenia, Schizophr. Res., 2003, 62, 147–153

    Article  PubMed  Google Scholar 

  29. Van Cauter E., Linkowski P., Kerkhofs M., Hubain P., L’Hermite-Baleriaux M., Leclercq R. et al., Circadian and sleep-related endocrine rhythms in schizophrenia, Arch. Gen. Psychiatry, 1991, 48, 348–356

    Article  PubMed  Google Scholar 

  30. Shepard P. D., Canavier C. C., Levitan E. S., Ether-a-go-go-related gene potassium channels: what’s all the buzz about?, Schizophr. Bull., 2007, 33, 1263–1269

    Article  PubMed  Google Scholar 

  31. Papa M., Boscea F., Canitano A., Castaldo P., Selletti S., Annunziato L. et al., Expression pattern of the ether-a-gogo-related (ERG) K+ channel-encoding genes ERG1, ERG2, and ERG3 in the adult rat central nervous system, J. Comp. Neurol., 2003, 466, 119–135

    Article  PubMed  CAS  Google Scholar 

  32. Saganich M. J., Machado E., Rudy B., Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain, J. Neurosci., 2001, 21, 4609–4624

    PubMed  CAS  Google Scholar 

  33. Moghaddam B., Adams B. W., Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats, Science, 1998, 281, 1349–1352

    Article  PubMed  CAS  Google Scholar 

  34. Patil, S. T., Zhang L., Martenyi F., Lowe S. L., Jackson K. A., Andreev B. V. et al., Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial, Nat. Med., 2007, 13, 1102–1107

    Article  PubMed  CAS  Google Scholar 

  35. Olszewski R. T., Bukhari N., Zhou J., Kozikowski A. P., Wroblewski J. T., Shamimi-Noori S. et al., NAAG peptidase inhibition reduces locomotor activity and some stereotypes in the PCP model of schizophrenia via group II mGluR, J. Neurochem., 2004, 89, 876–885

    Article  PubMed  CAS  Google Scholar 

  36. Ribeiro T. L., Copelli M., Caixeta F., Belchior H., Chialvo D. R., Nicolelis M. A. L. et al., Spike avalanches exhibit universal dynamics across the sleep-wake cycle, PLoS One, 2010, 5, e14129

    Article  PubMed  CAS  Google Scholar 

  37. Marsat G., Pollack G. S., A behavioral role for feature detection by sensory bursts, J. Neurosci., 2006, 26, 10542–10547

    Article  PubMed  CAS  Google Scholar 

  38. Destexhe A., Sejnowski T. J., The initiation of bursts in thalamic neurons and the cortical control of thalamic sensitivity, 2002, Phil. Trans. R. Soc. Lond. B, 357, 1649–1657

    Article  Google Scholar 

  39. Fuster J. M., The prefrontal cortex, 4th ed., Elsevier, London, UK, 2008

  40. Rosenzweig I, Varga ET, Akeson P, Beniczky S., Simple autonomic seizures and ictal enuresis, Seizure. 2011, 20, 662–664.

    Article  PubMed  Google Scholar 

  41. Zikopoulos B., Barbas H., Circuits for multisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates, Rev. Neurosci., 2007, 18, 417–438

    Article  PubMed  Google Scholar 

  42. Frith C.D., Blackemore S.J., Wolpert D.M., Explaining the symptoms of schizophrenia: Abnormalities in the awareness of action, Brain. Res. Rev., 2000, 31, 357–363

    Article  PubMed  CAS  Google Scholar 

  43. Lisman J.E., Hyun J.P., Zhang Y., Otmakhova N.A., A thalamohippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia, Biol. Psychiatry, 2010, 68, 17–24

    Article  PubMed  Google Scholar 

  44. Govindaiah G., Wang Y., Cox C.L., Dopamine enhances the excitability of somatosensory thalamocortical neurons, Neuroscience, 2010, 170(4), 981–991

    Article  PubMed  CAS  Google Scholar 

  45. Buzsaki G., Petit mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker, Neuroscience, 1990, 36(1), 1–14

    Article  PubMed  CAS  Google Scholar 

  46. Buzsaki G., The thalamic clock: emergent network properties, Neuroscience, 1991, 41(2/3), 351–364

    Article  PubMed  CAS  Google Scholar 

  47. Moghaddam B., Dopamine in the thalamus: a hotbed for psychosis?, Biol. Psychiatry, 2010, 68, 3–4

    Article  PubMed  Google Scholar 

  48. Lüscher C., Slesinger P.A., Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease, Nat. Rev. Neurosci., 2010, 11, 301–315

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Vukadinovic.

About this article

Cite this article

Vukadinovic, Z. Similarities between cortical “up” states during slow wave sleep and wakefulness: the implications for schizophrenia. Translat.Neurosci. 3, 51–55 (2012). https://doi.org/10.2478/s13380-012-0004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0004-2

keywords

Navigation