Liu J., Nyholt D.R., Magnussen P., Parano E., Pavone P., Geschwind D., et al., A genomewide screen for autism susceptibility loci, Am. J. Hum. Genet., 2001, 69, 327–340
PubMed
CAS
Google Scholar
Yonan A.L., Alarcón M., Cheng R, Magnusson P.K., Spence S.J., Palmer A.A., et al., A genomewide screen of 345 families for autism-susceptibility loci, Am. J. Hum. Genet., 2003, 73, 886–897
PubMed
CAS
Google Scholar
Williams E.L., Casanova M.F., Autism or autisms? Finding the lowest common denominator, Bol. Asoc. Méd. P.R., 2010 Oct, 102(4), 17–24
Google Scholar
Minshew N.J., Williams D.L., The new neurobiology of autism: Cortex, connectivity, and neuronal organization, Arch. Neurol., 2007, 64, 945–950
PubMed
Google Scholar
Casanova M.F., Buxhoeveden D.P., Switala A.E., Roy E. Minicolumnar pathology in autism, Neurology, 2002, 58, 428–432
PubMed
Google Scholar
Chenn A., Walsh C.A., Regulation of cerebral cortical size by control of cell cycle exit in neural precursors, Science, 2002, 297, 365–369
PubMed
CAS
Google Scholar
Bauman M.L., Kemper T.L., Neuroanatomic observations of the brain in autism: A review and future directions, Int. J. Dev. Neurosci., 2005, 23, 183–187
PubMed
Google Scholar
Herbert M.R., Ziegler D.A., Makris N., Filipek P.A., Kemper T.L., Normandin J.J., et al., Localization of white matter volume increase in autism and developmental language disorder, Ann. Neurol., 2004, 55, 530–540
PubMed
Google Scholar
Rinaldi T., Kulangara K., Antoniello K., Markram H., Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid, Proc. Natl. Acad. Sci. U.S.A., 2007, 104, 13501–13506
PubMed
CAS
Google Scholar
Rinaldi T., Perrodin C., Markram H., Hyper-connectivity and hyperplasticity in the medial prefrontal cortex in the valproic acid animal model of autism, Front. Neural Circuits, 2008, 2, 1–7
Google Scholar
Casanova M.F., El-Baz A., Mott M., Mannheim G., Hassan H., Fahmi R., et al., Reduced gyral window and corpus callosum size in autism: Possible macroscopic correlates of a minicolumnopathy, J. Autism Dev. Disord., 2009, 39, 751–764
PubMed
Google Scholar
Beaudet A.L., Autism: highly heritable but not inherited, Nat. Med., 2007, 13, 534–536
PubMed
CAS
Google Scholar
Muhle R., Trentacoste S.V., Rapin I., The genetics of autism, Pediatrics, 2004, 113, e472–e486
PubMed
Google Scholar
Herbert M.R., Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders, Curr. Opin. Neurol., 2010, 23, 103–110
PubMed
Google Scholar
Courchesne E., Carper R., Akshoomoff N., Evidence of brain overgrowth in the first year of life in autism, J. Am. Med. Assoc., 2003, 290, 337–344
Google Scholar
Rogers S.J., Developmental regression in autism spectrum disorders, Ment. Retard. Dev. Disabil. Res. Rev., 2004, 10, 139–143
PubMed
Google Scholar
Kumar V., Zhang M.X., Swank M.W., Kunz J., Wu G.Y., Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways, J. Neurosci., 2005, 25, 11288–11299
PubMed
CAS
Google Scholar
McDaniel M.A., Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence, Intelligence, 2005, 33, 337–346
Google Scholar
Burrell B., Postcards from the brain museum, Broadway Books, New York, 2004
Google Scholar
Happé F., Frith U., The weak central coherence account: Detail-focused cognitive style in autism spectrum disorders, J. Autism Dev. Disord., 2006, 36, 5–25
PubMed
Google Scholar
Treffert D.A., Extraordinary people: Understanding savant syndrome, iUniverse, Lincoln, 2006
Google Scholar
Redcay E., Courchesne E., When is the brain enlarged in autism? A meta-analysis of all brain size reports, Biol. Psychiatry, 2005, 58, 1–9
PubMed
Google Scholar
Pilarsky R., Cowden syndrome: A critical review of the clinical literature, J. Genet. Couns., 2009, 18, 13–27
Google Scholar
McBride K.L., Varga E.A., Pastore M.T., Prior T.W., Manickam K, Atkin J.F., et al., Confirmation of study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly, Biol. Autism Res., 2010, 3, 137–141
Google Scholar
Tamguney T., Stokoe D., New insights into PTEN, J. Cell. Sci., 2007, 120, 4071–4079
PubMed
CAS
Google Scholar
Nan X., Ng H.H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N., et al., Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, 1998, 393, 386–389
PubMed
CAS
Google Scholar
Muotri A.R., Marchetto M.C., Coufal N.G., Oefner R., Yeo G., Nakashima K, et al., L1 retrotransposition in neurons is modulated by MeCP2, Nature, 2010, 468, 443–446
PubMed
CAS
Google Scholar
Skene P.J., Illingworth R.S., Webb S., Kerr A.R., James K.D., Turner D.J., et al., Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state, Mol. Cell, 2010, 37, 457–468
PubMed
CAS
Google Scholar
Nelson W.J., Nusse R., Convergence of Wnt, β-catenin, and cadherin pathways, Science, 2004, 303, 1483–1487
PubMed
CAS
Google Scholar
Persad S., Troussard A.A., McPhee T.R., Mulholland D.J., Dedhar S., Tumor suppressor PTEN inhibits nuclear accumulation of beta-catenin and T cell/lymphoid enhancer factor 1-mediated transcriptional activation, J. Cell Biol., 2001, 153, 1161–1174
PubMed
CAS
Google Scholar
Carney R.M., Wolpert C.M., Ravan S.A., Shahbazian M., Ashley-Koch A., Cuccaro M.L., et al., Identification of MeCP2 mutations in a series of females with autistic disorder, Pediatr. Neurol., 2003, 28, 205–211
PubMed
Google Scholar
Samaco R.C., Nagarajan R.P., Braunschweig D., LaSalle J.M., Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders, Hum. Mol. Genet., 2004, 13, 629–639
PubMed
CAS
Google Scholar
Steelman L.S., Abrams S.L., Whelan J., Bertrand F.E., Ludwig D.E., Bäsecke J., et al., Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia, Leukemia, 2008, 22, 686–707
PubMed
CAS
Google Scholar
Kim D.H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-Bromage H., et al., mTOR interacts with raptor to form a nutrientsensitive complex that signals to the cell growth machinery, Cell, 2002, 110, 163–175
PubMed
CAS
Google Scholar
Wiznitzer M., Autism and tuberous sclerosis, J. Child Neurol., 2004, 19, 675–679
PubMed
Google Scholar
Ehninger D., De Vries P.J., Silva A.J., From mTOR to cognition: Molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis, J. Intellect. Disabil. Res., 2009, 53, 838–851
PubMed
CAS
Google Scholar
Griffiths P.D., Gardner S.A., Smith M., Rittey C., Powell T., Hemimegalencephaly and focal megalencephaly in tuberous sclerosis complex, Am. J. Neuroradiol., 1998, 19, 1935–1938
PubMed
CAS
Google Scholar
Christophe C., Sékhara T., Rypens F., Ziereisen F., Christiaens F., Dan B., MRI spectrum of cortical malformations in tuberous sclerosis complex, Brain Dev., 2000, 22, 487–493
PubMed
CAS
Google Scholar
Way S.W., McKenna J. 3rd, Mietzsch U., Reith R.M., Wu H.C., Gambello M.J., Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse, Hum. Mol. Genet., 2009, 18, 1252–1265
PubMed
CAS
Google Scholar
Bailey A., Luthert P., Dean A., Harding B., Janota I., Montgomery M., et al., A clinicopathological study of autism, Brain, 1998, 121, 889–905
PubMed
Google Scholar
Wegiel J., Kuchna I., Nowicki K., Imaki H., Wegiel J., Marchi E., et al., The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes, Acta Neuropathol., 2010, 119, 755–770
PubMed
Google Scholar
Mak B.C., Takemaru K., Kenerson H.L., Moon R.T., Yeung R.S., The tuberin-hamartin complex negatively regulates beta-catenin signaling activity, J. Biol. Chem., 2003, 278, 5947–5951
PubMed
CAS
Google Scholar
Daugherty R.L., Gottardi C.J., Phospho-regulation of β-catenin adhesion and signaling functions, Physiology, 2007, 22, 303–309
PubMed
CAS
Google Scholar
Brown V., Jin P., Ceman S., Darnell J.C., O’Donnell W.T., Tenenbaum S.A., et al., Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome, Cell, 2001, 107, 477–487
PubMed
CAS
Google Scholar
Luo Y., Shan G., Guo W., Smrt R.D., Johnson E.B., Li X., et al., Fragile X mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells, PLoS Genet., 2010, 6, e1000898
PubMed
Google Scholar
Hagerman R.J., Fragile X syndrome, In: Bauman M.L., Kemper T.L. (Eds.), The neurobiology of autism, 2nd ed., The Johns Hopkins University Press, London, 2005, 251–264
Google Scholar
Fatemi S.H., Folsom T.D., The role of fragile X mental retardation protein in major mental disorders, Neuropharmacology, 2011, 60, 1221–1226
PubMed
CAS
Google Scholar
Zalfa F., Marcello G., Primerano B., Moro A., Di Penta A., Reis S., et al., The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses, Cell, 2003, 112, 317–327
PubMed
CAS
Google Scholar
Castrén M., Tervonen T., Kärkkäinen V., Heinonen S., Castrén E., Larsson K., et al., Altered differentiation of neural stem cells in fragile X syndrome, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 17834–17839
PubMed
Google Scholar
Tervonen T.A., Louhivuori V., Sun X., Hokkanen M.E., Kratochwil C.F., Zebryk P., et al., Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome, Neurobiol. Dis., 2009, 33, 250–259
PubMed
CAS
Google Scholar
De Vries B.B.A., Mohkamsing S., Van den Ouweland A.M.W., Mol E., Gelsema K., Van Rijn M., et al., Screening for the fragile X syndrome among the mentally retarded: a clinical study, J. Med. Genet., 1999, 36, 467–470
PubMed
Google Scholar
Chausovsky A., Bershadsky A.D., Borisy G.G., Cadherin-mediated regulation of microtubule dynamics, Nat. Cell Biol., 2000, 2, 797–804
PubMed
CAS
Google Scholar
Reynolds A.B., Daniel J., McCrea P.D., Wheelock M.J., Wu J., Zhang Z., Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes, Mol. Cell Biol., 1994, 14, 8333–8342
PubMed
CAS
Google Scholar
Bienz M., β-catenin: A pivot between cell adhesion and Wnt signalling, Curr. Biol., 2004, 15, R65
Google Scholar
Ziegler S., Röhrs S., Tickenbrock L., Möröy T., Klein-Hitpass L., Vetter I.R., et al., Novel target genes of the Wnt pathway and statistical insights into Wnt target promoter regulation, FEBS J., 2005, 272, 1600–1615
PubMed
CAS
Google Scholar
Gearhart J., Pashos E.E., Prasad M.K., Pluripotency redux—advances in stem-cell research, N. Engl. J. Med., 2007, 357, 1469–1472
PubMed
CAS
Google Scholar
Cotterman R., Jin V.X., Krig S.R., Lemen J.M., Wey A., Farnham P.J., et al., N-Myc regulates a widespread euchromatic program in the human genome partially independent of its role as a classic transcription factor, Cancer Res., 2008, 68, 9654–9662
PubMed
CAS
Google Scholar
Nusse R., A list of target genes of Wnt/beta-catenin signaling [online resource], Howard Hughes Medical Center, Stanford, 2009 [accessed 2011 Jan 28], http://www.stanford.edu/~rnusse/pathways/targets.html
Google Scholar
Ding Q., Xia W., Liu J.C., Yang J.Y., Lee D.F., Xia J., et al., Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin, Mol. Cell, 2005, 19, 159–170
PubMed
CAS
Google Scholar
Gherzi R., Trabucchi M., Ponassi M., Ruggiero T., Corte G., Moroni C., et al., The RNA-binding protein KSRP promotes decay of betacatenin mRNA and is inacitvated by PI3K-AKT signaling, PLoS Biol., 2006, 5, e5
PubMed
Google Scholar
Bamji S.X., Shimazu K., Kimes N., Huelsken J., Birchmeier W., Lu B., et al., Role of beta-catenin in synaptic vesicle localization and presynaptic assembly, Neuron, 2003, 40, 719–731
PubMed
CAS
Google Scholar
Kwon C.H., Luikart B.W., Powell C.M., Zhou J., Matheny S.A., Zhang W., et al., Pten regulates neuronal arborization and social interaction in mice, Neuron, 2006, 50, 377–388
PubMed
CAS
Google Scholar
Wang Y., Greenwood J.S., Calcagnotto M.E., Kirsch H.E., Barbaro N.M., Baraban S.C., Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking neuronal expression of TSC1, Ann. Neurol., 2007, 61, 139–152
PubMed
CAS
Google Scholar
Nau H., Rating D., Koch S., Häuser I., Helge H., Valproic acid and its metabolites: Placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers, J. Pharmacol. Exp. Ther., 1981, 219, 768–777
PubMed
CAS
Google Scholar
DiLiberty J.H., Farndon P.A., Dennis N.R., Curry C.J., The fetal valproate syndrome, Am. J. Med. Genet., 1984, 19, 473–481
Google Scholar
Christianson A.L., Chesler N., Kromberg J.G., Fetal valproate syndrome: Clinical and neuro-developmental features in two sibling pairs, Dev. Med. Child Neurol., 1994, 36, 361–369
PubMed
CAS
Google Scholar
Moore S.J., Turnpenny P., Quinn A., Glover S., Lloyd D.J., Montgomery T., et al., A clinical study of 57 children with fetal anticonvulsant syndromes, J. Med. Genet., 2000, 37, 489–497
PubMed
CAS
Google Scholar
Rasalam A.D., Hailey H., Williams J.H., Moore S.J., Turnpenny P.D., Lloyd D.J., et al., Characteristics of fetal anticonvulsant syndrome associated autistic disorder, Dev. Med. Child Neurol., 2005, 47, 551–555
PubMed
CAS
Google Scholar
Markram H., Rinaldi T., Markram K.. The intense world syndrome—an alternative hypothesis for autism, Front. Neurosci., 2007, 1, 77–96
PubMed
Google Scholar
Shimshoni J.A., Dalton E.C., Jenkins A., Eyal S., Ewan K., Williams R.S., et al., The effects of central nervous system-active valproic acid constitutional isomers, cyclopropyl analogs, and amide derivatives on neuronal growth cone behavior, Mol. Pharmacol., 2007, 71, 884–892
PubMed
CAS
Google Scholar
Billin A.N., Thirlwell H., Ayer D.E., β-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator, Mol. Cell Biol., 2000, 20, 6882–6890
PubMed
CAS
Google Scholar
Wiltse J., Mode of action: inhibition of histone deacetylase, altering WNT-dependent gene expression, and regulation of beta-catenin—developmental effects of valproic acid, Crit. Rev. Toxicol., 2005, 35, 727–738
PubMed
CAS
Google Scholar
Wang Z., Xu L., Zhu X., Cui W., Sun Y., Nishijo H., et al., Demethylation of specitic Wnt/β-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure, Anat. Rec., 2010, 293, 1947–1953
CAS
Google Scholar
Raballo R., Rhee J., Lyn-Cook R., Leckman J.F., Schwartz M.L., Vaccarino F.M., Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex., J. Neurosci., 2000, 20, 5012–5023
PubMed
CAS
Google Scholar
Ryves J.W., Dalton E.C., Harwood A.J., Williams R.S., GSK-3 activity in neocortical cells is inhibited by lithium but not carbamazepine or valproic acid, Bipolar Disord., 2005, 7, 260–265
CAS
Google Scholar
Jope R.S., Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes, Trends Pharmacol. Sci., 2003, 24, 441–443
PubMed
CAS
Google Scholar
Yuskaitis C.J., Mines M.A., King M.K., Sweatt J.D., Miller C.A., Jope R.S., Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome, Biochem. Pharmacol., 2010, 79, 632–646
PubMed
CAS
Google Scholar
Hashimoto R., Senatorov V., Kanai H., Leeds P., Chuang D.M., Lithium stimulates progenitor proliferation in cultured brain neurons, Neuroscience, 2003, 117, 55–61
PubMed
CAS
Google Scholar
Laeng P., Pitts R.L., Pemire A.L., Drabik C.E., Weiner A., Tang H., et al., The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells, J. Neurochem., 2004, 91, 238–251
PubMed
CAS
Google Scholar
Vecsler M., Simon A.J., Amariglio N., Rechavi G., Gak E., MeCP2 deficiency downregulates specific nuclear proteins that could be partially recovered by valproic acid in vitro, Epigenetics, 2010, 5, 61–67
PubMed
CAS
Google Scholar
Tropea D., Giacometti E, Wilson N.R., Beard C., McCurry C., Fu D.D., et al., Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 2029–2034
PubMed
CAS
Google Scholar
McCaffrey P., Deustch C.K., Macrocephaly and the control of brain growth in autistic disorders, Prog. Neurobiol., 2005, 77, 38–56
Google Scholar
Croen L.A., Goines P., Braunschweig D., Yolkne R., Yoshida C.K., Grether J.K., et al., Brain-derived neurotrophic factor and autism: Maternal and infant peripheral blood levels in the Early Markers for Autism (EMA) study, Autism Res., 2008, 1, 130–137
PubMed
Google Scholar
Vaccarino F.M., Grigorenko E.L., Smith K.M., Stevens H.E., Regulation of cerebral cortical size and neuron number by fibroblast growth factors: Implications for autism, J. Autism Dev. Disord., 2009, 39, 511–520
PubMed
Google Scholar
Baron-Cohen S., The extreme male brain theory of autism, Trends Cogn. Sci., 2002, 6, 248–254
PubMed
Google Scholar
Knickmeyer R., Baron-Cohen S., Raggatt P., Taylor K., Hackett G., Fetal testosterone and empathy, Horm. Behav., 2006, 49, 282–292
PubMed
CAS
Google Scholar
Knickmeyer R., Baron-Cohen S., Fane B.A., Wheelwright S., Mathews G.A., Conway G.S., et al., Androgens and autistic traits: a study of individuals with congenital adrenal hyperplasia, Horm. Behav., 2006, 50, 148–153
PubMed
CAS
Google Scholar
Hague W.M., Adams J., Rodda C., Brook C.G., De Bruyn R., Grant D.B., et al., The prevalence of polycystic ovaries in patients with congenital adrenal hyperplasia and their close relatives, Clin. Endocrinol., 1990, 33, 501–510
CAS
Google Scholar
Ingudomnukul E., Baron-Cohen S., Wheelwright S., Knickmeyer R., Elevated rates of testosterone-related disorders in women with autism spectrum conditions, Horm. Behav., 2007, 51, 597–604
PubMed
CAS
Google Scholar
Shayya R., Chang R.J., Reproductive endocrinology of adolescent polycystic ovary syndrome, BJOG, 2010, 117, 150–155
PubMed
CAS
Google Scholar
Yang F., Li X., Sharma M., Sasaki C.Y., Longo D.L., Lim B., et al., Linking beta-catenin to androgen-signaling pathway, J. Biol. Chem., 2002, 277, 11336–11344
PubMed
CAS
Google Scholar
Pawlowski J.E., Ertel J.R., Allen M.P., Xu M., Butler C., Wilson E.M., et al., Liganded androgen receptor interaction with beta-catenin: Nuclear co-localization and modulation of transcriptional activity in neuronal cells, J. Biol. Chem., 2002, 277, 20702–20710
PubMed
CAS
Google Scholar
Cullen D.A., Killick R., Leigh P.N., Gallo J.M., The effect of polyglutamine expansion in the human androgen receptor on its ability to suppress β-catenin-Tcf/Lef dependent transcription, Neurosci. Lett., 2004, 354, 54–58
PubMed
CAS
Google Scholar
MacLusky N.J., Clark A.S., Naftolin F., Goldman-Rakic P.S., Estrogen formation in the mammalian brain: Possible role of aromatase in sexual differentiation of the hippocampus and neocortex, Steroids, 1987, 50, 459–474
PubMed
CAS
Google Scholar
Lemmen J.G., Broekhof J.L.M., Kuiper G.G.J.M., Gustafsson J.Å., van der Saag P.T., van der Burg B., Expression of estrogen receptor alpha and beta during mouse embryogenesis, Mech. Dev., 1999, 81, 163–167
PubMed
CAS
Google Scholar
Forlano P.M., Deitcher D.L., Myers D.A., Bass A.H., Anatomical distribution and cellular basis for high levels of aromatase activity in the brain of teleost fish: Aromatase enzyme and mRNA expression identify glia as source, J. Neurosci., 2001, 21, 8943–8955
PubMed
CAS
Google Scholar
Wang L., Andersson S., Warner M., Gustafsson J.A., Estrogen receptor (ER)beta knockout mice reveal a role for ERbeta in migration of cortical neurons in the developing brain, Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 703–708
PubMed
CAS
Google Scholar
Pardridge W.M., Mietus L.J., Transport of steroid hormones through the rat blood-brain barrier, J. Clin. Invest., 1979, 64, 145–154
PubMed
CAS
Google Scholar
Cardona-Gomez P., Perez M., Avila J., Garcia-Segura L.M., Wandosell F., Estradiol inhibits GSK3 and regulates interaction of estrogen receptors, GSK3, and beta-catenin in the hippocampus, Mol. Cell. Neurosci., 2004, 25, 363–373
PubMed
CAS
Google Scholar
Perez-Martin M., Azcoitia I., Trejo J.L., Sierra A., Garcia-Segura L.M., An antagonist of estrogen receptors blocks the induction of adult neurogenesis by insulin-like growth factor-I in the dentate gyrus of adult female rat, Eur. J. Neurosci., 2003, 18, 923–930
PubMed
Google Scholar
Homburg R., Pariente C., Lunenfeld B., Jacobs H.S., The role of insulin-like growth factor-1 (IGF-1) and IGF binding protein-1 (IGFBP-1) in the pathogenesis of polycystic ovary syndrome, Hum. Reprod., 1992, 7, 1379–1383
PubMed
CAS
Google Scholar
Kouzmenko A.P., Takeyama K., Ito S., Furatani T., Sawatsubashi S., Maki A., et al., Wnt/β-catenin and estrogen signaling converge in vivo, J. Biol. Chem., 2004, 279, 40255–40258
PubMed
CAS
Google Scholar
Varea O., Garrido J.J., Dopazo A., Mendex P., Garcia-Segura L.M., Wandosell F., Estradiol activates beta-catenin dependent transcription in neurons, PLoS ONE, 2009, 4, e5153
PubMed
Google Scholar
Simoncini T., Hafezi-Mghadam A., Brazil D.P., Ley K., Chin W.W., Liao J.K., Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase, Nature, 2000, 407, 538–541
PubMed
CAS
Google Scholar
Kuiper G.G., Carlsson B., Grandien K., Enmark E., Häggblad J., Nilsson S., et al., Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta, Endocrinology, 1997, 138, 863–870
PubMed
CAS
Google Scholar
Martin J.T., Sexual dimorphism in immune function: The role of prenatal exposure to androgens and estrogens, Eur. J. Pharmacol., 2000, 405, 251–261
PubMed
CAS
Google Scholar
Warren R.P., Odell J.D., Warren W.L., Burger R.A., Maciulis A, Daniels W.W., et al., Brief report: Immunoglobulin A deficiency in a subset of autistic subjects, J. Autism Dev. Disord., 1997, 27, 187–192
PubMed
CAS
Google Scholar
Gupta S., Aggarwal S., Rashanravan B., Lee T., Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism, J. Neuroimmunol., 1998, 85, 106–109
PubMed
CAS
Google Scholar
Ashwood P., Van de Water J., Is autism an autoimmune disease? Autoimmun. Rev., 2004, 3, 557–562
PubMed
CAS
Google Scholar
Li X., Chauhan A., Sheikh A.M., Patil S., Chauhan V., Li X.M., et al., Elevated immune response in the brain of autistic patients, J. Neuroimmunol., 2009, 207, 111–116
PubMed
CAS
Google Scholar
Singh V.K., Phenotypic expression of autoimmune autistic disorder (AAD): A major subset of autism, Ann. Clin. Psychiatry, 2009, 21, 148–161
PubMed
Google Scholar
Grether J.K., Croen L.A., Anderson M.C., Nelson K.B., Yolken R.H., Neonatally measured immunoglobulins and risk of autism, Autism Res., 2010, 3, 323–332
PubMed
Google Scholar
Angelidou A., Alysandratos K.D., Asadi S., Zhang B., Francis K., Vasiadi M., et al., Brief report: “Allergic symptoms” in children with autism spectrum disorders. More than meets the eye? J. Autism Dev. Disord., (in press), DOI: 10.1007/s10803-010-1171-z
Chess S., Fernandez P., Korn S., Behavioral consequences of congenital rubella, J. Pediatr., 1978, 93, 699–703
PubMed
CAS
Google Scholar
Taga T., Fukuda S., Role of IL-6 in the neural stem cell differentiation, Clin. Rev. Allergy Immunol., 2005, 28, 249–256
PubMed
CAS
Google Scholar
Carpentier P.A., Palmer T.D., Immune influence on adult neural stem cell regulation and function, Neuron, 2009, 64, 79–92
PubMed
CAS
Google Scholar
Wolf S.A., Steiner B., Wengner A., Lipp M., Kammertoens T., Kempermann G., Adaptive peripheral immune response increases proliferation of neural precursor cells in the adult hippocampus, FASEB J., 2009, 23, 3121–3128
PubMed
CAS
Google Scholar
Sarkar P., Bergman K., O’Connor T.G., Glover V., Maternal antenatal anxiety and amniotic fluid cortisol and testosterone: Possible implications for foetal programming, J. Neuroendocrinol., 2008, 20, 489–496
PubMed
CAS
Google Scholar
Pascual R., Ebner D., Araneda R., Urqueta M.J., Bustamante C., Maternal stress induces long-lasting Purkinje cell developmental impairments in mouse offspring, Eur. J. Pediatr., 2010, 169, 1517–1522
PubMed
Google Scholar
You J.J., Alter D.A., Stukel T.A., McDonald S.D., Laupacis A., Liu Y., et al., Proliferation of prenatal ultrasound, Can. Med. Assoc. J., 2010, 182, 143–151
Google Scholar
Miller M.W., Brayman A.A., Abramowicz J.S., Obstetric ultrasonography: a biophysical consideration of patient safety-the “rules” have changed, Am. J. Obstet. Gynecol., 1998, 179, 241–254
PubMed
CAS
Google Scholar
Sheiner E., Shoham-Vardi I., Abramowicz J.S., What do clinical users know regarding safety of ultrasound during pregnancy? J. Ultrasound Med., 2007, 26, 319–325
PubMed
Google Scholar
Williams E.L., Casanova M.F., Potential teratogenic effects of ultrasound on corticogenesis: Implications for autism, Med. Hypotheses, 2010, 75, 53–58
PubMed
CAS
Google Scholar
Dyson M., Franks C., Suckling J., Stimulation of healing of varicose ulcers by ultrasound, Ultrasonics, 1976, 14, 232–236
PubMed
CAS
Google Scholar
Duarte L.R., The stimulation of bone growth by ultrasound, Arch. Orthop. Trauma Surg., 1983, 101, 153–159
PubMed
CAS
Google Scholar
Ang E.S. Jr, Gluncic V., Duque A., Schafer M.E., Rakic P., Prenatal exposure to ultrasound waves impacts neuronal migration in mice, Proc. Natl. Acad. Sci. U.S.A., 2006, 103, 12903–12910
PubMed
CAS
Google Scholar
Sikov M.R., Effects of ultrasound on development. Part 2: Studies in mammalian species and overview, J. Ultrasound Med., 1986, 5, 651–661
PubMed
CAS
Google Scholar
Olkku A., Leskinen J.J., Lammi M.J., Hynynen K., Mahonen A., Ultrasound-induced activation of Wnt signaling in human MG-63 osteoblastic cells, Bone, 2010, 47, 320–330
PubMed
CAS
Google Scholar
Takeuchi R., Ryo A., Komitsu N., Mikuni-Takagaki Y., Fukui A., Takagi Y., et al., Low-intensity pulsed ultrasound activates the phosophatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: A basic science study, Arthritis Res. Ther., 2008, 10, R77
PubMed
Google Scholar
Mitragotri S., Blankschtein D., Langer R., Ultrasound-mediated transdermal protein delivery, Science, 1995, 269, 850–853
PubMed
CAS
Google Scholar
Van Wamel A., Bouakaz A., Versluis M., De Jong N., Micromanipulation of endothelial cells: Ultrasound-microbubble-cell interaction, Ultrasound Med. Biol., 2004, 30, 1255–1258
PubMed
Google Scholar
VanBavel E., Effects of shear stress on endothelial cells: Possible relevance for ultrasound applications, Prog. Biophys. Mol. Biol., 2007, 93, 374–383
PubMed
CAS
Google Scholar
Colombo A., Hall P., Nakamura S., Almagor Y., Maiello L., Martini G., et al., Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance, Circulation, 1995, 91, 1676–1688
PubMed
CAS
Google Scholar
Rioufol G., Finet G., Ginon I., André-Fouët X., Rossi R., Vialle E., et al., Multiple atherosclerotic plaque rupture in acute coronary syndrome: A three-vessel intravascular ultrasound study, Circulation, 2002, 106, 804–808
PubMed
CAS
Google Scholar
Yamamoto K., Takahashi T., Asahara T., Ohura N., Sokabe T., Kamiya A., et al., Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress, J. Appl. Physiol., 2003, 95, 2081–2088
PubMed
Google Scholar
Reher P., Doan N., Bradnock B., Meghji S., Harris M., Effect of ultrasound on the production of IL-8, basic FGF and VEGF, Cytokine, 1999, 11, 416–423
CAS
Google Scholar
Reher P., Harris M., Whiteman M., Hai H.K., Meghji S., Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts, Bone, 2002, 31, 236–241
PubMed
CAS
Google Scholar
Raab S., Plate K.H., Different networks, common growth factors: Shared growth factors and receptors of the vascular and the nervous system, Acta Neuropathol., 2007, 113, 607–626
PubMed
CAS
Google Scholar
Shen Q., Goderie S.K., Jin L., Karanth N., Sun Y., Abramova N., et al., Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells, Science, 2004, 304, 1338–1340
PubMed
CAS
Google Scholar
Sun J., Zhou W., Ma D., Yang Y., Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling, Dev. Dyn., 2010, 239, 2345–2353
PubMed
CAS
Google Scholar
Shen Q., Wang Y., Kokovay E., Lin G., Chuang S.M., Goderie S.K., et al., Adult SVZ stem cells lie in a vascular niche: A quantitative analysis of niche cell-cell interactions, Cell Stem Cell, 2008, 3, 289–300
PubMed
CAS
Google Scholar
Ye H., Liu J., Wu J.Y., Cell adhesion molecules and their involvement in autism spectrum disorder, Neurosignals, 2011, 18, 62–71
Google Scholar
Jamain S., Quach H., Betancur C., Råstam M., Colineaux C., Gillberg I.C., et al., Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism, Nat. Genet., 2003, 34, 27–29
PubMed
CAS
Google Scholar
Laumonnier F., Bonnet-Brilhault F., Gomot M., Blanc R., David A., Moizard M.P., et al., X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family, Am. J. Hum. Genet., 2004, 74, 552–557
PubMed
CAS
Google Scholar
Feng J., Schroer R., Yan J., Song W., Yang C., Bockholt A, et al., High frequency of neurexin 1beta signal peptide structural variants in patients with autism, Neurosci. Lett., 2006, 409, 10–13
PubMed
CAS
Google Scholar
Kim H.G., Kishikawa S., Higgins A.W., Seong I.S., Donovan D.J., Shen Y., et al., Disruption of neurexin 1 associated with autism spectrum disorder, Am. J. Hum. Genet., 2008, 82, 199–207
PubMed
CAS
Google Scholar
Chen S.X., Tari P.K., She K., Haas K., Neurexin-neuroligin cell adhesion complexes contribute to synaptotropic dendritogenesis via growth stabilization mechanisms in vivo, Neuron, 2010, 67, 967–983
PubMed
CAS
Google Scholar
Chih B., Engelman H., Scheiffele P., Control of excitatory and inhibitory synapse formation by neuroligins, Science, 2005, 307, 1324–1328
PubMed
CAS
Google Scholar
Budreck E.C., Scheiffele P., Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses, Eur. J. Neurosci., 2007, 26, 1738–1748
PubMed
Google Scholar
Hirao K., Hata Y., Ide N., Takeuchi M., Irie M., Yao I., et al., A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins, J. Biol. Chem., 1998, 273, 21105–21110
PubMed
CAS
Google Scholar
Barrow S.L., Constable J.R., Clark E., El-Sabeawy F., McAllister A.K., Washbourne P., Neuroligin1: A cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis, Neural Dev., 2009, 4, 17
PubMed
Google Scholar
Murase S., Mosser E., Schuman E.M., Depolarization drives betacatenin into neuronal spines promoting changes in synaptic structure and function, Neuron, 2002, 35, 91–105
PubMed
CAS
Google Scholar
Stan A., Pielarski K.N., Brigadski T., Wittenmayer N., Fedorchenko O., Gohla A., et al., Essential cooperation of N-cadherin and neuroligin-1 in the transsynaptic control of vesicle accumulation, Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 11116–11121
PubMed
CAS
Google Scholar
Yu X., Malenka R.C., β-catenin is critical for dendritic morphogenesis, Nat. Neurosci., 2003, 6, 1169–1177
PubMed
CAS
Google Scholar
Abe K., Takeichi M., NMDA-receptor activation induces calpainmediated β-catenin cleavages for triggering gene expression, Neuron, 2007, 53, 387–397
PubMed
CAS
Google Scholar
Derksen M.J., Ward N.L., Hartle K.D., Ivanco T.L., MAP2 and synaptophysin protein expression following motor learning suggests dynamic regulation and distinct alterations coinciding with synaptogenesis, Neurobiol. Learn. Mem., 2007, 87, 404–415
PubMed
CAS
Google Scholar
Antar L.N., Afroz R., Dictenberg J.B., Carroll R.C., Bassell G.J., Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and Fmr1 mRNA localization differentially in dendrites and at synapses, J. Neurosci., 2004, 24, 2648–2655
PubMed
CAS
Google Scholar
Wang H., Dictenberg J.B., Ku L., Li W., Bassell G.J., Feng Y., Dynamic association of the fragile X mental retardation protein as a messenger ribonucleoprotein between microtubules and polyribosomes, Mol. Biol. Cell, 2008, 19, 105–114
PubMed
CAS
Google Scholar
Nimchinsky E.A., Oberlander A.M., Svoboda K., Abnormal development of dendritic spines in FMR1 knock-out mice, J. Neurosci., 2001, 21, 5139–5146
PubMed
CAS
Google Scholar
Allin E.F., Evolution of the mammalian middle ear, J. Morphol., 1975, 147, 403–437
PubMed
CAS
Google Scholar
Sakarya O., Armstrong K.A., Adamska M., Adamski M., Wang I.F., Tidor B., et al., A post-synaptic scaffold at the origin of the animal kingdom, PLoS ONE, 2007, 2, e506
PubMed
Google Scholar
Nickel M., Evolutionary emergence of synaptic nervous systems: What can we learn from the non-synaptic, nerveless Porifera? Invertebr. Biol., 2010, 129, 1–16
Google Scholar
Pinto D., Pagnamenta A.T., Klei L., Anney R., Merico D., Regan R., et al., Functional impact of global rare copy number variation in autism spectrum disorders, Nature, 2010, 466, 368–372
PubMed
CAS
Google Scholar
Kolkova K., Novitskaya V., Pedersen N., Berezin V., Bock E., Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway, J. Neurosci., 2000, 20, 2238–2246
PubMed
CAS
Google Scholar
Chang L., Karin M., Mammalian MAP kinase signalling cascades, Nature, 2001, 410, 37–40
PubMed
CAS
Google Scholar
Laws S.C., Carey S.A., Ferrell J.M., Bodman G.J., Cooper R.L., Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats, Toxicol. Sci., 2000, 54, 154–167
PubMed
CAS
Google Scholar
Hertz-Picciotto I., Delwiche L., The rise in autism and the role of age at diagnosis, Epidemiology, 2009, 20, 84–90
PubMed
Google Scholar