Skip to main content
Log in

Spatio-temporal dependencies in functional connectivity in rodent cortical cultures

  • Researth Article
  • Published:
Paladyn

Abstract

Models of functional connectivity in cortical cultures on multi-electrodes arrays may aid in understanding how cognitive pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such models, this study uses both data- and model-driven approaches to determine what dependencies are present in and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their consistencies were verified using surrogate data. By comparing network-wide properties between model generated networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Maeda, H. P. Robinson, and A. Kawana The mechanisms of generation and propagation of synchronized bursting in developing networks of cortical neurons, J. Neurosci., 15(10), (1995), 6834–6845

    Google Scholar 

  2. Y. Jimbo, T. Tateno, and H. P. C. Robinson, Simultaneous induction of pathway-specific potentiation and depression in networks of cortical neurons, Biophysical Journal, 76, (1999), 670–678

    Article  Google Scholar 

  3. G. Shahaf and S. Marom, Learning in networks of cortical neurons, J. Neurosci., 21(22), (2001), 8782

    Google Scholar 

  4. J. van Pelt, P. S. Wolters, Michael A. Corner, W. L. C. Rutten, and Ger J. A. Ramakers, Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks, IEEE Trans. Bio-med. Eng., 51(11), (2004), 2051–2062

    Article  Google Scholar 

  5. T.B. DeMarse, D.A. Wagenaar, A.W. Blau, and S.M. Potter, The neurally controlled animat: biological brains acting with simulated bodies, Autonomous Robots, 11(3), (2001), 305–310

    Article  MATH  Google Scholar 

  6. M.W. Hammond, S. Marshall, J. Downes, D. Xydas, S.J. Nasuto, V.M. Becerra, K. Warwick, and B.J. Whalley, Robust methodology for the study of cultured neuronal networks on MEAs, Baden-Wurttemberg GmbH, Stuttgart, 2008

    Google Scholar 

  7. D. A. Wagenaar, J. Pine, and S. M. Potter, An extremely rich repertoire of bursting patterns during the development of cortical cultures, BMC Neuroscience, 7:11, (2006)

    Article  Google Scholar 

  8. J. van Pelt, I. Vajda, P. S. Wolters, M. A. Corner, and Ger J. A. Ramakers, Dynamics and plasticity in developing neuronal networks in vitro, Prog. Brain Res., 147, (2005), 173–188

    Google Scholar 

  9. D. A. Wagenaar, J. Pine, and S. M. Potter, Searching for plasticity in dissociated cortical cultures on multi-electrode arrays, Journal of Negative Results in Biomedicine, 5:16, (2006)

    Article  Google Scholar 

  10. M. Chiappalone, A. Novellino, I. Vaida, A. Vato, S. Martinoia, and J. Van Pelt, Burst detection algorithms for the analysis of spatiotemporal patterns in cortical networks of neurons, Neurocomputing, 65–66, (2005), 653–662

    Article  Google Scholar 

  11. E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience, 10(3), (2009), 186–198

    Article  Google Scholar 

  12. C. J. Honey, R. Kötter, M. Breakspear, and O. Sporns, Network structure of cerebral cortex shapes functional connectivity on multiple time scales, Proc. Nat. Acad. Sci. USA, 104(24), (2007), 10240–10245

    Article  Google Scholar 

  13. R. Madhavan, Z. C. Chao, and S. M. Potter, Plasticity of recurring spatiotemporal activity patterns in cortical networks, Physical Biology, 4(3), (2007), 181–193

    Article  Google Scholar 

  14. M. Kaiser, Hierarchy and dynamics of neural networks, Frontiers in Neuroinformatics, 4(August), 10–12, 2010

    Article  Google Scholar 

  15. A. Minerbi, R. Kahana, L. Goldfeld, M. Kaufman, S. Marom, and N. E. Ziv, Long-term relationships between synaptic tenacity, synaptic remodeling, and network activity, PLoS Biology, 7(6), (2009), e1000136

    Article  Google Scholar 

  16. J. D. Victor, Spike train metrics, Current Opinion in Neurobiology, 15(5), (2005), 585–592

    Article  Google Scholar 

  17. E. Pereda, Q. R. Quiroga, and J. Bhattacharya, Nonlinear multivariate analysis of neurophysiological signals, Progress in Neurobiology, 77(1–2), (2005), 1–37

    Article  Google Scholar 

  18. D. J. Watts and S. H. Strogatz, Collective dynamics of ’small-world’ networks, Nature, 393, (1998), 440–442

    Article  Google Scholar 

  19. P. Borgnat, E. Fleury, J. L. Guillaume, C. Magnien, C. Robardet, and A. Scherrer, Evolving networks, In Françoise Fogelman-Soulié, Domenico Perrotta, Jakub Piskorski, and Ralf Steinberg, editors, Proceedings of NATO Advanced Study Institute on Mining Massive Data Sets for Security, 198–204. IOS Press, 2008

  20. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Complex networks: Structure and dynamics, Physics Reports, 424(4–5), (2006), 175–308

    Article  MathSciNet  Google Scholar 

  21. M. C. Spencer, D. Xydas, J. H. Downes, M. W. Hammond, V. M. Becerra, K. Warwick, B. J. Whalley, and S. J. Nasuto, Investigation of spatio-temporal dependencies in neuronal functional connectivity, In: 9th IEEE Int. Conf. Cyber. Intel. Sys., 2010

  22. U. Egert, D. Heck, and A. Aertsen, Two-dimensional monitoring of spiking networks in acute brain slices, Experimental Brain Research, 142(2), (2002), 268–274

    Article  Google Scholar 

  23. D. A. Wagenaar and T. B. DeMarse, Meabench: A toolset for multi-electrode data acquisition and on-line analysis, Proc. 2nd Int. IEEE EMBS Conf. Neural Eng., 2005

  24. S. Grün, Data-driven significance estimation for precise spike correlation, Journal of Neurophysiology, 101(3), (2009), 1126–1140

    Article  Google Scholar 

  25. A. R. C. Paiva, I. Park, and J. C. Príncipe, A comparison of binless spike train measures, Neural Computing & Applications, 19(3), (2010), 405–419

    Article  Google Scholar 

  26. P. Grindrod and D. J. Higham, Evolving graphs: dynamical models, inverse problems and propagation, Proc. Roy. Soc. A, 466(2115), (2009), 753–770

    MathSciNet  Google Scholar 

  27. R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics, 74(1), (2002), 47–97

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Kreuz, D. Chicharro, M. Greschner, and R. G. Andrzejak, Timeresolved and time-scale adaptive measures of spike train synchrony, J. Neurosci. Methods, 195(1), (2010), 92–106

    Article  Google Scholar 

  29. M. C. Spencer, J. H. Downes, D. Xydas, M. W. Hammond, V. M. Becerra, K. Warwick, B. J. Whalley, and S. J. Nasuto, Multi-scale evolving complex network model of functional connectivity in neuronal cultures, IEEE Trans. Bio-med. Eng., (2011), 1–5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C. Spencer.

About this article

Cite this article

Spencer, M.C., Downes, J.H., Xydas, D. et al. Spatio-temporal dependencies in functional connectivity in rodent cortical cultures. Paladyn 2, 156–163 (2011). https://doi.org/10.2478/s13230-012-0002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13230-012-0002-7

Keywords

Navigation