Abstract
Quite recently Jankov and Pogány [JANKOV, D.—POGÁNY, T. K.: Integral representation of Schlömilch series, J. Classical Anal. 1 (2012) 75–84] derived a double integral representation of the Kapteyn-type series of Bessel functions. Here we completely describe the class of functions Λ = {α}, which generate the mentioned integral representation in the sense that the restrictions \(\alpha |_\mathbb{N} = (\alpha _n )_{n \in \mathbb{N}} \) is the sequence of coefficients of the input Kapteyn-type series.
This is a preview of subscription content,
to check access.References
ANDREWS, G. E.— ASKEY, R.— ROY, R.: Special Functions. EncyclopediaMath. Appl. 71, Cambridge University Press, Cambridge, 1999.
BARICZ, Á.— JANKOV, D.— POGÁNY, T. K.: Integral representation of first kind Kapteyn series, J. Math. Phys. 52 (2011), Article ID 043518.
CITRIN, D. S.: Optical analogue for phase-sensitive measurements in quantum-transport experiments, Phys. Rev. B 60 (1999), 5659–5663.
DOMINICI, D.: A new Kapteyn series, Integral Transforms Spec. Funct. 18 (2007), 409–418.
DOMINICI, D.: An application of Kapteyn series to a problem from queueing theory, Proc. Appl. Math. Mech. 7 (2007), 2050005–2050006.
DOMINICI, D.: On Taylor series and Kapteyn series of the first and second type, J. Comput. Appl. Math. 236 (2011), 39–48.
EISINBERG, A.— FEDELE, G.— FERRISE, A.— FRASCINO, D.: On an integral representation of a class of Kapteyn (Fourier-Bessel) series: Kepler’s equation, radiation problems and Meissel’s expansion, Appl. Math. Lett. 23 (2010), 1331–1335.
JANKOV, D.— POGÁNY, T. K.: Integral representation of Schlömilch series, J. Classical Anal. 1 (2012), 75–84.
JANKOV, D.— POGÁNY, T. K.— SÜLI, E.: On the coefficients of Neumann series of Bessel functions, J. Math. Anal. Appl. 380 (2011), 628–631.
KAPTEYN, W.: Recherches sur les functions de Fourier-Bessel, Ann. Sci. Éc. Norm. Supér. (4) 10 (1893), 91–120.
KAPTEYN, W.: On an expansion of an arbitrary function in a series of Bessel functions, Messenger of Math. 35 (1906), 122–125.
LANDAU, L.: Monotonicity and bounds on Bessel functions. In: Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory, Berkeley, California (2000), 147–154 (Electronic); Electron. J. Differ. Equ. Conf. 4, Southwest Texas State University, San Marcos, TX, 2000.
LERCHE, I.— SCHLICKEISER, R.— TAUTZ, R. C.: Comment on a new derivation of the plasma susceptibility tensor for a hot magnetized plasma without infinite sums of products of Bessel functions, Physics of Plasmas 15 (2008), Article ID 024701.
LERCHE, I.— TAUTZ, R. C.: A note on summation of Kapteyn series in astrophysical problems, Astrophys. J. 665 (2007), 1288–1291.
LERCHE, I.— TAUTZ, R. C.: Kapteyn series arising in radiation problems, J. Phys. A 41 (2008), Article ID 035202.
LERCHE, I.— TAUTZ, R. C.— CITRIN, D. S.: Terahertz-sideband spectra involving Kapteyn series, J. Phys. A 42 (2009), Article ID 365206.
MARSHALL, T. A.: On the sums of a family of Kapteyn series, Z. Angew. Math. Phys. 30 (1979), 1011–1016.
NIELSEN, N.: Recherches sur les séries de fonctions cylindriques dues á C. Neumann et W. Kapteyn, Ann. sci. de l’École Norm. Sup. 18 (1901), 39–75.
PLATZMAN, G. W.: An exact integral of complete spectral equations for unsteady onedimensional flow, Tellus 4 (1964), 422–431.
SCHOTT, G. A.: Electromagnetic Radiation and the Mechanical Reactions Arising From It, Being an Adams Prize Essay in the University of Cambridge, Cambridge University Press, Cambridge, 1912.
SHALCHI, A.— SCHLICKEISER, R.: Cosmic ray transport in anisotropic magnetohydrodynamic turbulence III. Mixed magnetosonic and Alfvènic turbulence, Astronom. Astrophys. 420 (2004), 799–808.
TAUTZ, R. C.— LERCHE, I.: A review of procedures for summing Kapteyn series in mathematical physics, Adv. Math. Phys. 2009 (2009), Article ID 425164.
THOMSON, J. J.: The magnetic properties of systems of corpuscles describing circular orbits, Philos. Mag. 6 (1903), 673–693.
WATSON, G. N.: A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1922.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Ján Borsík
About this article
Cite this article
Jankov, D., Pogány, T. On coefficients of Kapteyn-type series. Math. Slovaca 64, 403–410 (2014). https://doi.org/10.2478/s12175-014-0213-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s12175-014-0213-y