Mathematica Slovaca

, Volume 64, Issue 2, pp 403–410 | Cite as

On coefficients of Kapteyn-type series

  • Dragana JankovEmail author
  • Tibor Pogány


Quite recently Jankov and Pogány [JANKOV, D.—POGÁNY, T. K.: Integral representation of Schlömilch series, J. Classical Anal. 1 (2012) 75–84] derived a double integral representation of the Kapteyn-type series of Bessel functions. Here we completely describe the class of functions Λ = {α}, which generate the mentioned integral representation in the sense that the restrictions \(\alpha |_\mathbb{N} = (\alpha _n )_{n \in \mathbb{N}} \) is the sequence of coefficients of the input Kapteyn-type series.


Kapteyn series of Bessel functions Kapteyn-type series integral representation 

2010 Mathematics Subject Classification

Primary 40H05, 33C10 Secondary 40A30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ANDREWS, G. E.— ASKEY, R.— ROY, R.: Special Functions. EncyclopediaMath. Appl. 71, Cambridge University Press, Cambridge, 1999.Google Scholar
  2. [2]
    BARICZ, Á.— JANKOV, D.— POGÁNY, T. K.: Integral representation of first kind Kapteyn series, J. Math. Phys. 52 (2011), Article ID 043518.Google Scholar
  3. [3]
    CITRIN, D. S.: Optical analogue for phase-sensitive measurements in quantum-transport experiments, Phys. Rev. B 60 (1999), 5659–5663.CrossRefGoogle Scholar
  4. [4]
    DOMINICI, D.: A new Kapteyn series, Integral Transforms Spec. Funct. 18 (2007), 409–418.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    DOMINICI, D.: An application of Kapteyn series to a problem from queueing theory, Proc. Appl. Math. Mech. 7 (2007), 2050005–2050006.CrossRefGoogle Scholar
  6. [6]
    DOMINICI, D.: On Taylor series and Kapteyn series of the first and second type, J. Comput. Appl. Math. 236 (2011), 39–48.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    EISINBERG, A.— FEDELE, G.— FERRISE, A.— FRASCINO, D.: On an integral representation of a class of Kapteyn (Fourier-Bessel) series: Kepler’s equation, radiation problems and Meissel’s expansion, Appl. Math. Lett. 23 (2010), 1331–1335.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    JANKOV, D.— POGÁNY, T. K.: Integral representation of Schlömilch series, J. Classical Anal. 1 (2012), 75–84.Google Scholar
  9. [9]
    JANKOV, D.— POGÁNY, T. K.— SÜLI, E.: On the coefficients of Neumann series of Bessel functions, J. Math. Anal. Appl. 380 (2011), 628–631.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    KAPTEYN, W.: Recherches sur les functions de Fourier-Bessel, Ann. Sci. Éc. Norm. Supér. (4) 10 (1893), 91–120.zbMATHMathSciNetGoogle Scholar
  11. [11]
    KAPTEYN, W.: On an expansion of an arbitrary function in a series of Bessel functions, Messenger of Math. 35 (1906), 122–125.Google Scholar
  12. [12]
    LANDAU, L.: Monotonicity and bounds on Bessel functions. In: Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory, Berkeley, California (2000), 147–154 (Electronic); Electron. J. Differ. Equ. Conf. 4, Southwest Texas State University, San Marcos, TX, 2000.Google Scholar
  13. [13]
    LERCHE, I.— SCHLICKEISER, R.— TAUTZ, R. C.: Comment on a new derivation of the plasma susceptibility tensor for a hot magnetized plasma without infinite sums of products of Bessel functions, Physics of Plasmas 15 (2008), Article ID 024701.Google Scholar
  14. [14]
    LERCHE, I.— TAUTZ, R. C.: A note on summation of Kapteyn series in astrophysical problems, Astrophys. J. 665 (2007), 1288–1291.CrossRefGoogle Scholar
  15. [15]
    LERCHE, I.— TAUTZ, R. C.: Kapteyn series arising in radiation problems, J. Phys. A 41 (2008), Article ID 035202.Google Scholar
  16. [16]
    LERCHE, I.— TAUTZ, R. C.— CITRIN, D. S.: Terahertz-sideband spectra involving Kapteyn series, J. Phys. A 42 (2009), Article ID 365206.Google Scholar
  17. [17]
    MARSHALL, T. A.: On the sums of a family of Kapteyn series, Z. Angew. Math. Phys. 30 (1979), 1011–1016.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    NIELSEN, N.: Recherches sur les séries de fonctions cylindriques dues á C. Neumann et W. Kapteyn, Ann. sci. de l’École Norm. Sup. 18 (1901), 39–75.zbMATHGoogle Scholar
  19. [19]
    PLATZMAN, G. W.: An exact integral of complete spectral equations for unsteady onedimensional flow, Tellus 4 (1964), 422–431.CrossRefMathSciNetGoogle Scholar
  20. [20]
    SCHOTT, G. A.: Electromagnetic Radiation and the Mechanical Reactions Arising From It, Being an Adams Prize Essay in the University of Cambridge, Cambridge University Press, Cambridge, 1912.Google Scholar
  21. [21]
    SHALCHI, A.— SCHLICKEISER, R.: Cosmic ray transport in anisotropic magnetohydrodynamic turbulence III. Mixed magnetosonic and Alfvènic turbulence, Astronom. Astrophys. 420 (2004), 799–808.CrossRefGoogle Scholar
  22. [22]
    TAUTZ, R. C.— LERCHE, I.: A review of procedures for summing Kapteyn series in mathematical physics, Adv. Math. Phys. 2009 (2009), Article ID 425164.Google Scholar
  23. [23]
    THOMSON, J. J.: The magnetic properties of systems of corpuscles describing circular orbits, Philos. Mag. 6 (1903), 673–693.CrossRefzbMATHGoogle Scholar
  24. [24]
    WATSON, G. N.: A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1922.zbMATHGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of OsijekOsijekCroatia
  2. 2.Faculty of Maritime StudiesUniversity of RijekaRijekaCroatia

Personalised recommendations