Mathematica Slovaca

, Volume 64, Issue 1, pp 229–246

Some considerations on Hydra groups and a new bound for the length of words

  • Daniele Ettore Otera
  • Francesco G. Russo
  • Vincenzo Russo
Article
  • 52 Downloads

Abstract

After a survey on some recent results of Riley and others on Ackermann functions and Hydra groups, we make an analogy between DNA sequences, whose growth is the same of that of Hydra groups, and a musical piece, written with the same algorithmic criterion. This is mainly an aesthetic observation, which emphasizes the importance of the combinatorics of words in two different contexts. A result of specific mathematical interest is placed at the end, where we sharpen some previous bounds on deterministic finite automata in which there are languages with hairpins.

Keywords

isoperimetric functions finitely presented groups lengths of words counterpoint Myhill-Nerode’s theorem 

2010 Mathematics Subject Classification

Primary 57M50 Secondary 68R05, 68Q15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ADLEMAN, L.— KARI, J.— KARI, L.— REISHUS, D.— SOSIK, P.: The undecidability of the infinite Ribbon problem: Implications for computing by self-assembly, SIAM J. Comput. 38 (2009), 2356–2381.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    BACH, J. S.: Opera Omnia, Urtext Verlag, Berlin, 2000.Google Scholar
  3. [3]
    BAUMSLAG, G.: A non-cyclic one-relator group all of whose finite quotients are cyclic, J. Austral. Math. Soc. 10 (1969), 497–498.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    BERNASCONI, A.A.: On HNN-extensions and the complexity of the word problem for one-relator groups. PhD Thesis, University of Utah, 1994.Google Scholar
  5. [5]
    BJORGER, E.: Computability, Complexity, Logic. Stud. LogicF ound. Math. 128, North-Holland Publishing Co., Amsterdam, 1989.Google Scholar
  6. [6]
    BRADY, N.— DISON, W.— RILEY, T.: Hyperbolic hydra. Preprint, http://arxiv.org/abs/1105.1535, Cornell University Library, 2011.Google Scholar
  7. [7]
    CANNON, J. W.— EPSTEIN, D. A.— HOLT, D. F.— LEVY, S. V.— PATERSON, M. S.— THURSTON, W. P.: Word Processing in Groups, Jones and Bartlett, London, 1992.MATHGoogle Scholar
  8. [8]
    COHEN, D. E.: The mathematician who had little wisdom: a story and some mathematics. In: Combinatorial and Geometric Group Theory (Edinburgh, 1993), LMS Lecture Notes 204, Cambridge University Press, Cambridge, 1995, pp. 56–62.Google Scholar
  9. [9]
    CSOUNDS, Program of musical synthesis and signal processing system, http://www.csounds.com, Rome, 2011.
  10. [10]
    CZEIZLER, EL.— CZEIZLER, EU.— KARI, L.— SALOMAA, K.: On the descriptional complexity of Watson-Crick automata, Theoret. Comput. Sci. 410 (2009), 3250–3260.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    CZEIZLER, EL.— CZEIZLER, EU.— KARI, L.— SEKI, S.: An extension of the Lyndon-Schutzenberger result to pseudoperiodic words, Inform. and Comput. 209 (2011), 717–730.CrossRefMATHMathSciNetGoogle Scholar
  12. [12]
    DISON, W.— RILEY, T.: Hydra groups. Preprint, http://arxiv.org/abs/1002.1945, Cornell University Library, 2010.Google Scholar
  13. [13]
    FRIEDMAN, H. M.: Long finite sequences, J. Combin. Theory Ser. A 95 (2001), 102–144.CrossRefMATHMathSciNetGoogle Scholar
  14. [14]
    GERSTEN, S. M.: Isodiametric and isoperimetric inequalities in group extensions. Preprint, University of Utah, 1991.Google Scholar
  15. [15]
    GERSTEN, S. M.: Isoperimetric and isodiametric functions. In: Geometric Group Theory I (G. Niblo, M. Roller, eds.), LMS Lecture Notes 181, Cambridge University Press, Cambridge, 1993, pp. 79–96.Google Scholar
  16. [16]
    HOFSTADTER, D. R.: Gödel, Escher, Bach: an Eternal Golden Braid, Penguin Books, Harmondsworth, 1981.MATHGoogle Scholar
  17. [17]
    KARRASS, A.— MAGNUS, W.— SOLITAR, D.: Combinatorial Group Theory (2nd ed.), Dover Publications, Mineola, NY, 2004.MATHGoogle Scholar
  18. [18]
    KARI, L.— KONSTANTINIDIS, S.— LOSSEVA, E.— SOSIK, P.— THIERRIN, G.: A formal language analysis of hairpin structures, Fund. Inform. 71 (2006), 453–475.MATHMathSciNetGoogle Scholar
  19. [19]
    KARI, L.— KONSTANTINIDIS, S.— SOSIK, P.: On properties of bond-free DNA languages, Theoret. Comput. Sci. 334 (2005), 131–159.CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    KARI, L.— MAHALINGAM, K.: Watson-Crick bordered words and their syntactic monoid, Internat. J. Found. Comput. Sci. 19 (2008), 1163–1179.CrossRefMATHMathSciNetGoogle Scholar
  21. [21]
    KARI, L.— SEKI, S.: An improved bound for an extension of Fine and Wilf’ s theorem, and its optimality, Fund. Inform. 101 (2010), 215–236.MATHMathSciNetGoogle Scholar
  22. [22]
    KASSABOV, M.— RILEY, T.: The Dehn function of Baumslag’s Metabelian Group. Preprint, http://arxiv.org/abs/1008.1966, Cornell University Library, 2010.Google Scholar
  23. [23]
    LEHNINGER, A.: Biochemistry, Worth Publishers, New York, 1976.Google Scholar
  24. [24]
    LOTHAIRE, M.: Algebraic Combinatorics on Words. Encyclopedia Math. Appl. 90, Cambridge University Press, Cambridge, 2011.MATHGoogle Scholar
  25. [25]
    MAZZOLA, G.: The Topos of Music, Birkäuser Verlag, Berlin, 2002.CrossRefMATHGoogle Scholar
  26. [26]
    MILLER, C. F.: Decision problems for groups — survey and reflections. In: Algorithms and Classification in Combinatorial Group Theory, Lect.Workshop, Berkeley/CA (USA) 1989. Math. Sci. Res. Inst. Publ. 23, Cambridge Univ. Press, Cambridge, 1992, pp. 1–59.Google Scholar
  27. [27]
    NIERHAUS, G. Algorithmic Composition. Paradigms of Automated Music Generation, Springer Verlag, Wien, 2009.CrossRefMATHGoogle Scholar
  28. [28]
    OLSHANSKIJ, A. YU.— SAPIR, M. V.: Groups with small Dehn functions and bipartite chord diagrams, Geom. Funct. Anal. 16 (2006), 1324–1376.CrossRefMathSciNetGoogle Scholar
  29. [29]
    OTERA, D. E.— RUSSO, F. G.: On the wgsc property in some classes of groups, Mediterr. J. Math. 6 (2009), 501–508.CrossRefMATHMathSciNetGoogle Scholar
  30. [30]
    PLATONOV, A. N.: An isoperimetric function of the Baumslag-Gersten group, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3 (2004), 12–17.MathSciNetGoogle Scholar
  31. [31]
    RUSSO, F. G.: La Musica Algoritmica e l’Offerta Musicale di J.S.Bach, Delta 3, Grottaminarda (Avellino), 2004.MATHGoogle Scholar
  32. [32]
    RUSSO, F. G.: On compact Just-Non-Lie groups, J. Lie Theory 17 (2007), 625–632.MATHMathSciNetGoogle Scholar
  33. [33]
    RUSSO, F. G.— SCHETTINO, C.: A simulation of the madrigal n. 1 of the book III of Carlo Gesualdo da Venosa, Far East J. Math. Sci. (FJMS) 47 (2010), 51–61.MathSciNetGoogle Scholar
  34. [34]
    RUSSO, V.: I Prodotti del gene RIZ (Retinoblastoma Interacting Zinc-finger protein) nel controllo della proliferazione cellulare. MSc Thesis, Second University of Naples, 2010.Google Scholar
  35. [35]
    SCHWEITZER, A.: G. S. Bach, Il Musicista-Poeta, Suvini Zerboni, Milano, 1952.Google Scholar
  36. [36]
    TOURLAKIS, G. J.: Computability, Reston Publ. Co. Inc., Reston (Vancouver), 1984.MATHGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2014

Authors and Affiliations

  • Daniele Ettore Otera
    • 1
    • 2
  • Francesco G. Russo
    • 3
    • 4
  • Vincenzo Russo
    • 5
  1. 1.Laboratoire de Mathématiques Bâtiment 425Faculté de Science d’Orsay, Université Paris-Sud 11Orsay CedexFrance
  2. 2.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  3. 3.DEIMUniversitá degli Studi di PalermoPalermoItaly
  4. 4.Instituto de MatemáticaUniversidade Federal do Rio de Janeiro, Ilha do FundãoRio de JaneiroBrazil
  5. 5.Dipartimento di EmatologiaUniversitá degli Studi di Napoli Federico IINaplesItaly

Personalised recommendations