Skip to main content
Log in

Oscillation criteria for nonlinear neutral functional dynamic equations on time scales

  • Regular paper
  • Published:
Mathematica Slovaca

Abstract

In this paper, we establish some new sufficient conditions for oscillation of the second-order neutral functional dynamic equation

$$\left[ {r\left( t \right)\left[ {m\left( t \right)y\left( t \right) + p\left( t \right)y\left( {\tau \left( t \right)} \right)} \right]^\Delta } \right]^\Delta + q\left( t \right)f\left( {y\left( {\delta \left( t \right)} \right)} \right) = 0$$

on a time scale \(\mathbb{T}\) which is unbounded above, where m, p, q, r, T and δ are real valued rd-continuous positive functions defined on \(\mathbb{T}\). The main investigation of the results depends on the Riccati substitutions and the analysis of the associated Riccati dynamic inequality. The results complement the oscillation results for neutral delay dynamic equations and improve some oscillation results for neutral delay differential and difference equations. Some examples illustrating our main results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AGARWAL, R. P.— BOHNER, M.— SAKER, S. H.: Oscillation criteria for second order delay dynamic equation, Canad. Appl. Math. Quart. 13 (2005), 1–19.

    MathSciNet  MATH  Google Scholar 

  2. AGARWAL, R. P.— O’REGAN, D.— SAKER, S. H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. Appl. 300 (2004), 203–217.

    Article  MathSciNet  MATH  Google Scholar 

  3. AGARWAL, R. P.— O’REGAN, D.— SAKER, S. H.: Oscillation criteria for nonlinear perturbed dynamic equations of second-order on time scales, J. Appl. Math. Comput. 20 (2006), 133–147.

    Article  MathSciNet  MATH  Google Scholar 

  4. AGARWAL, R. P.— O’REGAN D.— SAKER S. H.: Properties of bounded solutions of nonlinear dynamic equations on time scales, Canad. Appl. Math. Quart. 14 (2006), 1–10.

    MathSciNet  MATH  Google Scholar 

  5. AGARWAL R. P.— O’rEGAN D.— SAKER S. H.: Oscillation of second-order damped dynamic equations on time scales, J. Math. Anal. Appl. 330 (2007), 1317–1337.

    Article  MathSciNet  MATH  Google Scholar 

  6. AKIN-BOHNER, E.,— BOHNER, M.— SAKER, S. H.: Oscillation for a certain of class of second order Emden-Fowler dynamic equations, Electron. Trans. Numer. Anal. 27 (2007), 1–12.

    MathSciNet  MATH  Google Scholar 

  7. AKIN-BOHNER E.— HOFFACKER J.: Oscillation properties of an Emden-Fowler type equation on discrete time scales, J. Difference Equ. Appl. 9 (2003), 603–612.

    Article  MathSciNet  MATH  Google Scholar 

  8. BOHNER, M.— PETERSON, A.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.

    Book  MATH  Google Scholar 

  9. BOHNER, M.— PETERSON, A.: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.

    Book  MATH  Google Scholar 

  10. BOHNER, M.— SAKER, S. H.: Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math. 34 (2004), 1239–1254.

    Article  MathSciNet  MATH  Google Scholar 

  11. BOHNER, M.— SAKER, S. H.: Oscillation criteria for perturbed nonlinear dynamic equations, Math. Comput. Modelling 40 (2004), 249–260.

    Article  MathSciNet  MATH  Google Scholar 

  12. DRIVER, D. R.: A mixed neutral systems, Nonlinear Anal. 8 (1984), 155–158.

    Article  MathSciNet  MATH  Google Scholar 

  13. ERBE, L.: Oscillation criteria for second order linear equations on a time scale, Canad. Appl. Math. Quart. 9 (2001) 1–31.

    MathSciNet  Google Scholar 

  14. ERBE, L.— PETERSON, A.— SAKER, S. H.: Oscillation criteria for second-order nonlinear dynamic equations on time scales, J. London Math. Soc. (2) 76 (2003) 701–714.

    Article  MathSciNet  Google Scholar 

  15. ERBE, L.— PETERSON, A.— SAKER, S. H.: Kamenev-type oscillation criteria for second-order linear delay dynamic equations, Dynam. Systems Appl. 15 (2006), 65–78.

    MathSciNet  MATH  Google Scholar 

  16. ERBE, L.— PETERSON, A.— SAKER, S. H.: Oscillation criteria for a forced second order nonlinear dynamic equation, J. Difference Equ. Appl. 14 (2008), 997–1009.

    Article  MathSciNet  MATH  Google Scholar 

  17. ERBE, L.— PETERSON, A.— SAKER, S. H.: Hille-Kneser type criteria for second-order dynamic equations on time scales, Adv. Differential Equations 2006 (2006), 1–18.

    Article  Google Scholar 

  18. ERBE, L.— PETERSON, A.— SAKER, S. H.: Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal. Appl. 333 (2007), 505–522.

    Article  MathSciNet  MATH  Google Scholar 

  19. GRAEF, J. R.— GRAMMATIKOPOULOS, M. K.— SPIKES, P. W.: Asymptotic properties of solutions of nonlinear neutral delay differential equations of the second order, Rad. Mat. 4 (1988), 133–149.

    MathSciNet  MATH  Google Scholar 

  20. GRAMMATIKOPOULOS, M. K.— LADAS, G.— MEIMARIDOU, A.: Oscillation of second order neutral delay differential equations, Rad. Mat. 1 (1985), 267–274.

    MathSciNet  MATH  Google Scholar 

  21. GOLDA, W.— WERBOWSKI, J.: Oscillation of second order neutral differential equations, Nonlinear Vibration Problems 25 (1993), 103–110.

    MathSciNet  MATH  Google Scholar 

  22. HALE, J. K.: Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.

    Book  MATH  Google Scholar 

  23. HILGER, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18–56.

    MathSciNet  MATH  Google Scholar 

  24. LI, H. J.— LIU, W. L.: Oscillation criteria for second order neutral differential equations, Canad. J. Math. 48 (1996), 871–886.

    Article  MathSciNet  MATH  Google Scholar 

  25. LI, H. J.— Yeh, C. C.: Oscillation criteria for second-order neutral delay difference equations, Comput. Math. Appl. 36 (1998), 123–132.

    Article  MathSciNet  MATH  Google Scholar 

  26. MATHSEN, R. M.— Wang, Qiru— Wu, Hongwu: Oscillation for neutral dynamic functional equations on time scales, J. Difference Equ. Appl. 10 (2004), 651–659.

    Article  MathSciNet  MATH  Google Scholar 

  27. ŞAHINER, Y.: Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales, Adv. Difference Equ. 2006 (2006), 1–9.

    Google Scholar 

  28. KAC, V.— CHEUNG, P.: Quantum Calculus, Springer, New York, 2001.

    Google Scholar 

  29. KELLEY, W.— PETERSON, A.: Difference Equations: An Introduction With Applications (2nd ed.), Harcourt/Academic Press, San Diego, 2001.

    MATH  Google Scholar 

  30. SAKER, S. H.: Oscillation Theory of Dynamic Equations on Time Scales, Second and Third Order, Lambert Academic Publishing, Saarbrücken, 2010.

    Google Scholar 

  31. SAKER, S. H.: Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput. 148 (2004), 81–91.

    Article  MathSciNet  MATH  Google Scholar 

  32. SAKER, S. H.: Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005), 375–387.

    Article  MathSciNet  MATH  Google Scholar 

  33. SAKER, S. H.: Oscillation of second-order forced nonlinear dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. 23 (2005), 1–17.

    Google Scholar 

  34. SAKER, S. H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005), 375–387.

    Article  MathSciNet  MATH  Google Scholar 

  35. SAKER, S. H.: Boundedness of solutions of second-order forced nonlinear dynamic equations, Rocky Mountain J. Math. 36 (2006), 2027–2039.

    Article  MathSciNet  MATH  Google Scholar 

  36. SAKER, S. H.: New oscillation criteria for second-order nonlinear dynamic equations on time scales, Nonlinear Funct. Anal. Appl. 11 (2006), 351–370.

    MathSciNet  MATH  Google Scholar 

  37. SAKER, S. H.: Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type, Dynam. Systems Appl. 15 (2006), 629–644.

    MathSciNet  Google Scholar 

  38. SAKER, S. H.: Oscillation of second-order delay and neutral delay dynamic equations on time scales, Dynam. Systems Appl. 16 (2007), 345–360.

    MathSciNet  MATH  Google Scholar 

  39. SAKER, S. H.: On oscillation of second-order delay dynamic equations on time scales, Aust. J. Math. Anal. Appl. 5 (2008), 1–14.

    MathSciNet  Google Scholar 

  40. SAKER, S. H.: Oscillation of second-order delay perturbed dynamic equations on time scales, Commun. Appl. Anal. 12 (2008), 209–220.

    MathSciNet  MATH  Google Scholar 

  41. SPEDDING, V.: Taming Nature’s Numbers, New Scientist (2003), Issue 2404, July 19, 28–31.

  42. SWAMY, P. N.: Deformed Heisenberg algebra, origin of q-calculus, Phys. A 328 (2003), 145–153.

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu, Hongwu— ZHUANG, R. K.— MATHSEN, R. M.: Oscillation criteria for secondorder nonlinear neutral variable delay dynamic equations, Appl. Math. Comput. 178 (2006), 321–331.

    Article  MathSciNet  MATH  Google Scholar 

  44. ZHANG, B. G.— CHENG, S. S.: Oscillation criteria and comparison theorems for delay difference equations, Fasc. Math. 25 (1995), 13–32.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kubiaczyk.

Additional information

Communicated by Michal Fečkan

About this article

Cite this article

Kubiaczyk, I., Saker, S.H. & Sikorska-Nowak, A. Oscillation criteria for nonlinear neutral functional dynamic equations on time scales. Math. Slovaca 63, 263–290 (2013). https://doi.org/10.2478/s12175-012-0097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s12175-012-0097-7

2010 Mathematics Subject Classification

Keywords

Navigation