Abstract
In this paper, we establish some new sufficient conditions for oscillation of the second-order neutral functional dynamic equation
on a time scale \(\mathbb{T}\) which is unbounded above, where m, p, q, r, T and δ are real valued rd-continuous positive functions defined on \(\mathbb{T}\). The main investigation of the results depends on the Riccati substitutions and the analysis of the associated Riccati dynamic inequality. The results complement the oscillation results for neutral delay dynamic equations and improve some oscillation results for neutral delay differential and difference equations. Some examples illustrating our main results are given.
Similar content being viewed by others
References
AGARWAL, R. P.— BOHNER, M.— SAKER, S. H.: Oscillation criteria for second order delay dynamic equation, Canad. Appl. Math. Quart. 13 (2005), 1–19.
AGARWAL, R. P.— O’REGAN, D.— SAKER, S. H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. Appl. 300 (2004), 203–217.
AGARWAL, R. P.— O’REGAN, D.— SAKER, S. H.: Oscillation criteria for nonlinear perturbed dynamic equations of second-order on time scales, J. Appl. Math. Comput. 20 (2006), 133–147.
AGARWAL, R. P.— O’REGAN D.— SAKER S. H.: Properties of bounded solutions of nonlinear dynamic equations on time scales, Canad. Appl. Math. Quart. 14 (2006), 1–10.
AGARWAL R. P.— O’rEGAN D.— SAKER S. H.: Oscillation of second-order damped dynamic equations on time scales, J. Math. Anal. Appl. 330 (2007), 1317–1337.
AKIN-BOHNER, E.,— BOHNER, M.— SAKER, S. H.: Oscillation for a certain of class of second order Emden-Fowler dynamic equations, Electron. Trans. Numer. Anal. 27 (2007), 1–12.
AKIN-BOHNER E.— HOFFACKER J.: Oscillation properties of an Emden-Fowler type equation on discrete time scales, J. Difference Equ. Appl. 9 (2003), 603–612.
BOHNER, M.— PETERSON, A.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
BOHNER, M.— PETERSON, A.: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
BOHNER, M.— SAKER, S. H.: Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math. 34 (2004), 1239–1254.
BOHNER, M.— SAKER, S. H.: Oscillation criteria for perturbed nonlinear dynamic equations, Math. Comput. Modelling 40 (2004), 249–260.
DRIVER, D. R.: A mixed neutral systems, Nonlinear Anal. 8 (1984), 155–158.
ERBE, L.: Oscillation criteria for second order linear equations on a time scale, Canad. Appl. Math. Quart. 9 (2001) 1–31.
ERBE, L.— PETERSON, A.— SAKER, S. H.: Oscillation criteria for second-order nonlinear dynamic equations on time scales, J. London Math. Soc. (2) 76 (2003) 701–714.
ERBE, L.— PETERSON, A.— SAKER, S. H.: Kamenev-type oscillation criteria for second-order linear delay dynamic equations, Dynam. Systems Appl. 15 (2006), 65–78.
ERBE, L.— PETERSON, A.— SAKER, S. H.: Oscillation criteria for a forced second order nonlinear dynamic equation, J. Difference Equ. Appl. 14 (2008), 997–1009.
ERBE, L.— PETERSON, A.— SAKER, S. H.: Hille-Kneser type criteria for second-order dynamic equations on time scales, Adv. Differential Equations 2006 (2006), 1–18.
ERBE, L.— PETERSON, A.— SAKER, S. H.: Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal. Appl. 333 (2007), 505–522.
GRAEF, J. R.— GRAMMATIKOPOULOS, M. K.— SPIKES, P. W.: Asymptotic properties of solutions of nonlinear neutral delay differential equations of the second order, Rad. Mat. 4 (1988), 133–149.
GRAMMATIKOPOULOS, M. K.— LADAS, G.— MEIMARIDOU, A.: Oscillation of second order neutral delay differential equations, Rad. Mat. 1 (1985), 267–274.
GOLDA, W.— WERBOWSKI, J.: Oscillation of second order neutral differential equations, Nonlinear Vibration Problems 25 (1993), 103–110.
HALE, J. K.: Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
HILGER, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18–56.
LI, H. J.— LIU, W. L.: Oscillation criteria for second order neutral differential equations, Canad. J. Math. 48 (1996), 871–886.
LI, H. J.— Yeh, C. C.: Oscillation criteria for second-order neutral delay difference equations, Comput. Math. Appl. 36 (1998), 123–132.
MATHSEN, R. M.— Wang, Qiru— Wu, Hongwu: Oscillation for neutral dynamic functional equations on time scales, J. Difference Equ. Appl. 10 (2004), 651–659.
ŞAHINER, Y.: Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales, Adv. Difference Equ. 2006 (2006), 1–9.
KAC, V.— CHEUNG, P.: Quantum Calculus, Springer, New York, 2001.
KELLEY, W.— PETERSON, A.: Difference Equations: An Introduction With Applications (2nd ed.), Harcourt/Academic Press, San Diego, 2001.
SAKER, S. H.: Oscillation Theory of Dynamic Equations on Time Scales, Second and Third Order, Lambert Academic Publishing, Saarbrücken, 2010.
SAKER, S. H.: Oscillation of nonlinear dynamic equations on time scales, Appl. Math. Comput. 148 (2004), 81–91.
SAKER, S. H.: Oscillation criteria of second-order half-linear dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005), 375–387.
SAKER, S. H.: Oscillation of second-order forced nonlinear dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. 23 (2005), 1–17.
SAKER, S. H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math. 177 (2005), 375–387.
SAKER, S. H.: Boundedness of solutions of second-order forced nonlinear dynamic equations, Rocky Mountain J. Math. 36 (2006), 2027–2039.
SAKER, S. H.: New oscillation criteria for second-order nonlinear dynamic equations on time scales, Nonlinear Funct. Anal. Appl. 11 (2006), 351–370.
SAKER, S. H.: Oscillation of second-order neutral delay dynamic equations of Emden-Fowler type, Dynam. Systems Appl. 15 (2006), 629–644.
SAKER, S. H.: Oscillation of second-order delay and neutral delay dynamic equations on time scales, Dynam. Systems Appl. 16 (2007), 345–360.
SAKER, S. H.: On oscillation of second-order delay dynamic equations on time scales, Aust. J. Math. Anal. Appl. 5 (2008), 1–14.
SAKER, S. H.: Oscillation of second-order delay perturbed dynamic equations on time scales, Commun. Appl. Anal. 12 (2008), 209–220.
SPEDDING, V.: Taming Nature’s Numbers, New Scientist (2003), Issue 2404, July 19, 28–31.
SWAMY, P. N.: Deformed Heisenberg algebra, origin of q-calculus, Phys. A 328 (2003), 145–153.
Wu, Hongwu— ZHUANG, R. K.— MATHSEN, R. M.: Oscillation criteria for secondorder nonlinear neutral variable delay dynamic equations, Appl. Math. Comput. 178 (2006), 321–331.
ZHANG, B. G.— CHENG, S. S.: Oscillation criteria and comparison theorems for delay difference equations, Fasc. Math. 25 (1995), 13–32.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Michal Fečkan
About this article
Cite this article
Kubiaczyk, I., Saker, S.H. & Sikorska-Nowak, A. Oscillation criteria for nonlinear neutral functional dynamic equations on time scales. Math. Slovaca 63, 263–290 (2013). https://doi.org/10.2478/s12175-012-0097-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s12175-012-0097-7