Skip to main content
Log in

Oscillation criteria for a class of nonlinear fourth order neutral differential equations

  • Regular paper
  • Published:
Mathematica Slovaca

Abstract

In this paper, sufficient conditions are obtained for oscillation of a class of nonlinear fourth order mixed neutral differential equations of the form

$$\left( {\frac{1} {{a\left( t \right)}}\left( {\left( {y\left( t \right) + p\left( t \right)y\left( {t - \tau } \right)} \right)^{\prime \prime } } \right)^\alpha } \right)^{\prime \prime } = q\left( t \right)f\left( {y\left( {t - \sigma _1 } \right)} \right) + r\left( t \right)g\left( {y\left( {t + \sigma _2 } \right)} \right)$$
((E))

under the assumption

$$\int\limits_0^\infty {\left( {a\left( t \right)} \right)^{\tfrac{1} {\alpha }} dt} = \infty .$$

where α is a ratio of odd positive integers. (E) is studied for various ranges of p(t).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AGARWAL, R. P.— GRACE, S. R.— WONG, P. J. Y.: Oscillation of fourth order nonlinear difference equations, Int. J. Difference Equ. 2 (2007), 123–137.

    MathSciNet  Google Scholar 

  2. BOE, E.— CHANG, H. C.: Dynamics of delayed systems under feedback control, Chem. Eng. Sci. 44 (1989), 1281–1294.

    Article  Google Scholar 

  3. DRIVER, R. D.: A mixed neutral systems, Nonlinear Anal. 8 (1984), 155–158.

    Article  MathSciNet  MATH  Google Scholar 

  4. GYORI, I.— LADAS, G.: Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.

    Google Scholar 

  5. GRAEF, J. R.— SPIKES, P. W.: On the oscillation of an n-th order nonlinear neutral delay differential equation, J. Comput. Appl. Math. 41 (1992), 35–40.

    Article  MathSciNet  MATH  Google Scholar 

  6. HALE, J. K.: Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.

    Book  MATH  Google Scholar 

  7. KUSANO, T.— NAITO, M.: Non-linear oscillation of fourth order differential equations, Canad. J. Math. 4 (1976), 840–852.

    Article  MathSciNet  Google Scholar 

  8. KUSANO, T.— NAITO, M.: On fourth order nonlinear oscillations, J. London Math. Soc. (2) 14 (1976), 91–105.

    Article  MathSciNet  MATH  Google Scholar 

  9. PARHI, N.— RATH, R. N.: On oscillation criteria for forced nonlinear higher order neutral differential equations, Math. Slovaca 54 (2004), 369–388.

    MathSciNet  MATH  Google Scholar 

  10. PARHI, N.— TRIPATHY, A. K.: On oscillatory fourth order nonlinear neutral differential equations-I, Math. Slovaca 54 (2004), 389–410.

    MathSciNet  MATH  Google Scholar 

  11. PARHI, N.— TRIPATHY, A. K.: On oscillatory fourth order nonlinear neutral differential equations-II, Math. Slovaca 55 (2005), 183–202.

    MathSciNet  MATH  Google Scholar 

  12. POPOV, E. P.: Automatic regulation and Control, Nauka, Moscow, 1966 (Russian).

    Google Scholar 

  13. THANDAPANI, E.— AROCKIASAMY, I. M.: Oscillatory and asymptotic behaviour of fourth order nonlinear neutral delay difference equations, Indian J. Pure Appl. Math. 32 (2001), 109–123.

    MathSciNet  MATH  Google Scholar 

  14. TRIPATHY, A. K. Oscillation properties of a class of neutral differential equations with positive and negative coefficients, Fasc. Math. 45 (2010), 133–155.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Tripathy.

Additional information

Communicated by Michal Fečkan

About this article

Cite this article

Tripathy, A.K. Oscillation criteria for a class of nonlinear fourth order neutral differential equations. Math. Slovaca 63, 243–262 (2013). https://doi.org/10.2478/s12175-012-0096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s12175-012-0096-8

2010 Mathematics Subject Classification

Keywords

Navigation