Skip to main content
Log in

Simplex-valued probability

  • Published:
Mathematica Slovaca

Abstract

We continue our study of generalized probability from the viewpoint of category theory. Assuming that each generalized probability measure is a morphism, we model basic probabilistic notions within the category cogenerated by its range. It is known that the closed unit interval I = [0, 1], carrying a suitable difference structure, cogenerates the category ID in which the classical and fuzzy probability theories can be modeled. We study generalized probability theories modeled within two different categories cogenerated by a simplex S n = {(x 1, x 2, …, x n ) ∈ I n : \( \mathop \sum \limits_{i = 1}^n \) x i ≤ 1}, carrying a suitable difference structure; since I and S 1 coincide, for n = 1 we get the fuzzy probability theory as a special case. In the first case, when the morphisms preserve the so-called pure elements, the resulting category S n D, n > 1, and ID are isomorphic and the generalized probability theories modeled in ID and S n D are “the same”. In the second case, when the morphisms map each maximal element to a maximal element, the resulting categories WS n D, n > 1, lead to different models of generalized probability theories. We define basic notions of the corresponding simplex-valued probability theories and mention some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ADÁMEK, J.: Theory of Mathematical Structures, Reidel, Dordrecht, 1983.

  2. BUGAJSKI, S.: Statistical maps I. Basic properties, Math. Slovaca 51 (2001), 321–342.

    MATH  MathSciNet  Google Scholar 

  3. BUGAJSKI, S.: Statistical maps II. Operational random variables, Math. Slovaca 51 (2001), 343–361.

    MATH  MathSciNet  Google Scholar 

  4. DVUREČENSKIJ, A.— PULMANNOVÁ, S.: New Trends in Quantum Structures, Kluwer Academic Publ./Ister Science, Dordrecht/Bratislava, 2000.

    MATH  Google Scholar 

  5. CHOVANEC, F.— KÔPKA, F.: D-posets. In: Handbook of Quantum Logic and Quantum Structures: Quantum Structures (K. Engesser, D. M. Gabbay, D. Lehmann, eds.), Elsevier, Amsterdam, 2007, pp. 367–428.

    Chapter  Google Scholar 

  6. CHOVANEC, F.— FRIČ, R.: States as morphisms Internat. J. Theoret. Phys. (To appear). Published online DOI10.1007/s10773-009-0234-4.

  7. FOULIS, D. J.— BENNETT, M. K.: Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.

    Article  MathSciNet  Google Scholar 

  8. FRIČ, R.: Convergence and duality, Appl. Categ. Structures 10 (2002), 257–266.

    Article  MATH  MathSciNet  Google Scholar 

  9. FRIČ, R.: Duality for generalized events, Math. Slovaca 54 (2005), 49–60.

    Google Scholar 

  10. FRIČ, R.: Remarks on statistical maps and fuzzy (operational) random variables, Tatra Mt. Math. Publ. 30 (2005), 21–34.

    MATH  MathSciNet  Google Scholar 

  11. FRIČ, R.: Statistical maps: a categorical approach, Math. Slovaca 57 (2007), 41–57.

    Article  MATH  MathSciNet  Google Scholar 

  12. FRIČ, R.: Extension of domains of states, Soft Comput. 13 (2009), 63–70.

    Article  MATH  Google Scholar 

  13. FRIČ, R.— PAPČO, M.: On probability domains Internat. J. Theoret. Phys. (To appear). Published online DOI10.1007/s10773-009-0162-3.

  14. FRIČ, R.— PAPČO, M.: A categorical approach to probability (Submitted)

  15. GUDDER, S.: Fuzzy probability theory, Demonstratio Math. 31 (1998), 235–254.

    MATH  MathSciNet  Google Scholar 

  16. FRIČ, R.— PAPČO, M.: A categorical approach to probability theory, Studia Logica 94 (2010), 215–230.

    Article  MATH  MathSciNet  Google Scholar 

  17. KÔPKA, F.— CHOVANEC, F.: D-posets, Math. Slovaca 44 (1994), 21–34.

    MATH  MathSciNet  Google Scholar 

  18. PAPČO, M.: On measurable spaces and measurable maps, Tatra Mt. Math. Publ. 28 (2004), 125–140.

    MATH  MathSciNet  Google Scholar 

  19. PAPČO, M.: On fuzzy random variables: examples and generalizations, Tatra Mt. Math. Publ. 30 (2005), 175–185.

    MATH  MathSciNet  Google Scholar 

  20. PAPČO, M.: On effect algebras, Soft Comput. 12 (2007), 26–35.

    Google Scholar 

  21. RIEČAN, B.: Probability theory on IF events. In: Algebraic and Proof-Theoretic Aspects of Non-classical Logics. Papers in Honour of Daniele Mundici on the occasion of his 60th Birthday (S. Aguzzoli et al., eds.), Lecture Notes in Comput. Sci. 4460, Springer, Berlin, 2007, pp. 290–308.

    Google Scholar 

  22. RIEČAN, B.— MUNDICI, D.: Probability on MV -algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 869–910.

    Google Scholar 

  23. RIEČAN, B.— NEUBRUNN, T.: Integral, Measure, and Ordering, Kluwer Acad. Publ., Dordrecht-Boston-London, 1997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Frič.

Additional information

Communicated by Anatolij Dvurečenskij

Dedicated to Silvia Pulmannová

This work was supported by the Slovak Research and Development Agency (contract No. APVV-0071-06); and Slovak Scientific Grant Agency (VEGA project 2/6088/26).

About this article

Cite this article

Frič, R. Simplex-valued probability. Math. Slovaca 60, 607–614 (2010). https://doi.org/10.2478/s12175-010-0035-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s12175-010-0035-5

2000 Ma thematics Subject Classification

Keywords

Navigation