Skip to main content
Log in

Barrier infrared detectors

  • Original Papers
  • Published:
Opto-Electronics Review

Abstract

In 1959, Lawson and co-workers publication triggered development of variable band gap Hg1−xCdxTe (HgCdTe) alloys providing an unprecedented degree of freedom in infrared detector design. Over the five decades, this material system has successfully fought off major challenges from different material systems, but despite that it has more competitors today than ever before. It is interesting however, that none of these competitors can compete in terms of fundamental properties. They may promise to be more manufacturable, but never to provide higher performance or, with the exception of thermal detectors, to operate at higher temperatures.

In the last two decades a several new concepts of photodetectors to improve their performance have been proposed including trapping detectors, barrier detectors, unipolar barrier photodiodes, and multistage detectors. This paper describes the present status of infrared barrier detectors. It is especially addressed to the group of III-V compounds including type-II superlattice materials, although HgCdTe barrier detectors are also included. It seems to be clear that certain of these solutions have merged as a real competitions of HgCdTe photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2010.

    Google Scholar 

  2. A. White, “Infrared detectors”, U.S. Patent 4,679,063, 1983.

    Google Scholar 

  3. P.C. Klipstein, “Depletionless photodiode with suppressed dark current and method for producing the same”, U.S. Patent 7,795,640, 2003.

    Google Scholar 

  4. S. Maimon and G. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating temperature”, Appl. Phys. Lett. 89, 151109–1-3 (2006).

    Article  ADS  Google Scholar 

  5. D.Z.-Y. Ting, A. Soibel, L. Höglund, J. Nguyen, C.J. Hill, A. Khoshakhlagh, and S.D. Gunapala, “Type-II superlattice infrared detectors”, in Semiconductors and Semimetals, Vol. 84, pp. 1–57, edited by S.D. Gunapala, D.R. Rhiger, and C. Jagadish, Elsevier, Amsterdam, 2011.

    Article  Google Scholar 

  6. J.B. Rodriguez, E. Plis, G. Bishop, Y.D. Sharma, H. Kim, L.R. Dawson, and S. Krishna, “nBn structure based on InAs/GaSb type-II strained layer superlattices”, Appl. Phys. Lett. 91, 043514–1-2 (2007).

    Article  ADS  Google Scholar 

  7. G.R. Savich, J.R. Pedrazzani, D.E. Sidor, and G.W. Wicks, “Benefits and limitations of unipolar barriers in infrared photodetectors”, Infrared Physics & Technol. 59, 152–155 (2013).

    Article  ADS  Google Scholar 

  8. P. Klipstein, “XBn barrier photodetectors for high sensitivity operating temperature infrared sensors” Proc. SPIE. 6940, 69402U-1–11 (2008).

    Article  Google Scholar 

  9. D.Z. Ting, C.J. Hill, A. Soibel, J. Nguyen, S.A. Keo, M.C. Lee, J.M. Mumolo, J.K. Liu, and S.D. Gunapala, “Antimonide-based barrier infrared detectors”, Proc. SPIE 7660, 76601R-1–12 (2010).

    Article  Google Scholar 

  10. P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, A. Glozman, T. Fishman, E. Ber- kowicz, O. Magen, I. Shtrichman, and E. Weiss, “XBn barrier photodetectors based on InAsSb with high operating temperatures” Opt. Eng. 50, 061002-1–10 (2011).

    Article  ADS  Google Scholar 

  11. G.R. Savich, J.R. Pedrazzani, D.E. Sidor, S. Maimon, and G.W. Wicks, “Use of unipolar barriers to block dark currents in infrared detectors” Proc. SPIE 8012, 8022T (2012).

    Google Scholar 

  12. P. Martyniuk and A. Rogalski, “HOT infrared photodetectors”, Opto-Electron. Rev. 21, 240–258 (2013).

    Article  ADS  Google Scholar 

  13. P. Klipstein, D. Aronov, E. Berkowicz, R. Fraenkel, A. Glozman, S. Grossman, O. Klin, I. Lukomsky, I. Shtrichman, N. Snapi, M. Yassem, and E. Weiss, “Reducing the cooling requirements of mid-wave IR detector arrys”, SPIE Newsroom 10.1117/2.1201111.003919, 2011.

    Google Scholar 

  14. M. Razeghi, S.P. Abdollahi, E.K. Huang, G. Chen, A. Haddadi, and B.M. Nquyen, “Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures”, Opto-Electr. Rev. 19, 261–269 (2011).

    Article  ADS  Google Scholar 

  15. M. Razeghi, “Type II superlattice enables high operating temperature,” SPIE Newsroom, 10.1117/2.1201110.003870 (2011).

    Google Scholar 

  16. G.R. Savich, J.R. Pedrazzani, D.E. Sidor, S. Maimon, and G.W. Wicks, “Dark current filtering in unipolar barrier infrared detectors”, Appl. Phys. Lett. 99, 121112 (2011).

    Article  ADS  Google Scholar 

  17. P.C. Klipstein, Y. Gross, A. Aronov, M. ben Ezra, E. Berkowicz, Y. Cohen, R. Fraenkel, A. Glozman, S. Grossman, O. Kin, I. Lukomsky, T. Markowitz, L. Shkedy, I. Sntrichman, N. Snapi, A. Tuito, M. Yassen, and E. Weiss, “Low SWaP MWIR detector based on XBn focal plane array” Proc. SPIE 8704, id. 87041S-1–12 (2013).

    Article  Google Scholar 

  18. A. Khoshakhlagh, S. Myers, E. Plis, M.N. Kutty, B. Klein, N. Gautam, H. Kim, E.P.G. Smith, D. Rhiger, S.M. Johnson, and S. Krishna, “Mid-wavelength InAsSb detectors based on nBn design”, Proc. SPIE 7660, 76602Z (2010).

    Article  ADS  Google Scholar 

  19. A.M. Itsuno, J.D. Philips, and S. Velicu, “Design and modelling of HgCdTe nBn detectors”, J. Elect. Mater. 40, 1624–1629 (2011).

    Article  ADS  Google Scholar 

  20. M. Kopytko, A. KębŁowski, W. Gawron, P. Madejczyk, A. Kowalewski, and K. Jźówikowski, “High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD”, Opto-Electr. Rev. 21.42, 402–405 (2013).

    Article  ADS  Google Scholar 

  21. J.F. Klem, J.K. Kim, M.J. Cich, S.D. Hawkins, T.R. Fortune, and J.L. Rienstra, “Comparison of nBn and nBp mid-wave barrier infrared photodetectors”, Proc. SPIE 7608, 76081P (2010).

    Article  ADS  Google Scholar 

  22. H. Kroemer, “The 6.1 Å family (InAs, GaSb, AlSb) and its heterostructures: a selective review”, Physica E20, 196–203 (2004).

    Article  ADS  Google Scholar 

  23. H. Sakaki, L.L. Chang, R. Ludeke, C.A. Chang, G.A. Sai—Halasz, and L. Esaki, “In1−xGaxAs-GaSb1−yAsy heterojunctions by molecular beam epitaxy”, Appl. Phys. Lett. 31, 211–213 (1977).

    Article  ADS  Google Scholar 

  24. Y. Wei and M. Razeghi, “Modelling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering”, Phys. Rev. B69, 085316–7 (2004).

    Article  ADS  Google Scholar 

  25. G.A. Umana-Membreno, B. Klein, H. Kala, J. Antoszewski, N. Gautam, M.N. Kutty, E. Plis, S. Krishna, and L. Faraone, “Vertical minority carrier electron transport in p-type InAs/GaSb type-II superlattices”, Appl Phys. Lett. 101, 253515 (2012).

    Article  ADS  Google Scholar 

  26. D. Zuo, P. Qiao, D. Wasserman, and S.L. Chuang, “Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control”, Appl. Phys. Lett. 102, 141107 (2013).

    Article  ADS  Google Scholar 

  27. E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, “InAsSb-based XBnn bariodes grown by molecular beam epitaxy on GaAs”, J. Crystal Growth 339, 31–35 (2012).

    Article  ADS  Google Scholar 

  28. P. Martyniuk and A. Rogalski, “Modelling of InAsSb/AlAsSb nBn HOT detector’s performance limits”, Proc. SPIE 8704, 87041X (2013).

    Article  ADS  Google Scholar 

  29. A.I. D’Souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. de Lyon, R.D. Rajavel, H. Sharifi, N.K. Dhar, P.S. Wijewarnasuriya, and C. Grein, “5MWIR InAsSb barrier detector data and analysis”, Proc. SPIE 8704, 87041U (2013).

    Article  Google Scholar 

  30. E.H. Aifer, J.G. Tischler, J. H. Warner, I. Vurgaftman, W.W. Bewley, J.R. Meyer, J.C. Kim, and L.J. Whitman, “W-structured type-II superlattice long-wave infrared photodiodes with high quantum efficiency”, Appl. Phys. Lett. 89, 053519 (2006).

    Article  ADS  Google Scholar 

  31. B.-M. Nguyen, M. Razeghi, V. Nathan, and G.J. Brown, “Type-II “M” structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes”, Proc. SPIE 6479, 64790S (2007).

    Article  ADS  Google Scholar 

  32. B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, “Dark current suppression in type II InAs/GaSb superlattice long wavelength infrared photodiodes with M-structure”, Appl. Phys. Lett. 163511 (2007).

    Google Scholar 

  33. B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, E.K. Huang, M. Razeghi, and J. Pellegrino, “Band edge tunability of M-structure for heterojunction design in Sb based type II superlattice photodiodes”, Appl. Phys. Lett. 93, 163502 (2008).

    Article  ADS  Google Scholar 

  34. M. Razeghi, H. Haddadi, A.M. Hoang, E.K. Huang, G. Chen, S. Bogdanov, S.R. Darvish, F. Callewaert, and R. McClintock, “Advances in antimonide-based Type-II superlattices for infrared detection and imaging at centre for quantum devices”, Infrared Phys. & Technol. 59, 41–52 (2013).

    Article  ADS  Google Scholar 

  35. O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, R. Turan, Y. Ergun, and A. Aydinli, “«N» structure for type-II superlattice photodetectors”, Appl. Phys. Lett. 101, 073505 (2012).

    Article  ADS  Google Scholar 

  36. J.L. Johnson, L.A. Samoska, A.C. Gossard, J.L. Merz, M.D. Jack, G.H. Chapman, B.A. Baumgratz, K. Kosai, and S.M. Johnson, “Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb”, J. Appl. Phys. 80, 1116–1127 (1996).

    Article  ADS  Google Scholar 

  37. A. Khoshakhlagh J.B. Rodriguez, E. Plis, G.D. Bishop, Y.D. Sharma, H.S. Kim, L.R. Dawson and S. Krishna, “Bias dependent dual band response from InAs/Ga(In)Sb type II strain layer superlattice detectors”, Appl. Phys. Lett. 91, 263504 (2007).

    Article  ADS  Google Scholar 

  38. I. Vurgaftman, E.H. Aifer, C.L. Canedy, J.G. Tischler, J.R. Meyer, and J.H. Warner, “Graded band gap for dark-current suppression in long-wave infrared W-structured type-II superlattice photodiodes”, Appl. Phys. Lett. 89, 121114 (2006)

    Article  ADS  Google Scholar 

  39. E.H. Aifer, J.H. Warner, C.L. Canedy, I. Vurgaftman, E.M. Jackson, J.G. Tischler, J.R. Meyer, S.P. Powell, K. Olver, and W.E. Tennant, “Shallow-etch mesa isolation of graded- -bandgap“W”-structured type II superlattice photodiodes”, J. Electron. Mater. 39, 1070–1079 (2010).

    Article  ADS  Google Scholar 

  40. D.Z.-Y. Ting, C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, J. Nguyen, and S.D. Gunapala, “A high-performance long wavelength superlattice complementary barrier infrared detector”, Appl. Phys. Lett. 95, 023508 (2009).

    Article  Google Scholar 

  41. E.A. DeCuir, G.P. Meissner, P.S. Wijewarnasuriya, N. Gautam, S. Krishna, N.K. Dhar, R.E. Welser, and A.K. Sood, “Long-wave type-II superlattice detectors with unipolar electron and hole barriers”, Opt. Eng. 51, 124001 (2012).

    Article  ADS  Google Scholar 

  42. N. Gautam, S. Myers, A.V. Barve, B. Klein, E.P. Smith, D. Rhiger, E. Plis, M.N. Kutty, N. Henry, T. Schuler-Sandyy, and S. Krishna, “Band engineering HOT midwave infrared detectors based on type-II InAs/GaSb strained layer superlattices”, Infrared Physics & Techol. 59, 72–77 (2013).

    Article  ADS  Google Scholar 

  43. E. Plis, H.S. Kim, G. Bishop, S. Krishna, K. Banerjee, and S. Ghosh, “Lateral diffusion of minority carriers in nBn based type-II InAs/GaSb strained layer superlattice detectors”, Appl. Phys. Lett. 93, 123507 (2008).

    Article  ADS  Google Scholar 

  44. A.D. Hood, A.J. Evans, A. Ikhlassi, D.L. Lee, and W.E. Tennant, “LWIR strained-layer superlattice materials and devices at Teledyne Imaging Sensors”, J. Electron. Mater. 39, 1001–1006 (2010).

    Article  ADS  Google Scholar 

  45. W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, “MBE HgCdTe Technology: A very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic”, J. Electron. Mater. 37, 1406 (2008).

    Article  ADS  Google Scholar 

  46. D.R. Rhiger, “Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe”, J. Electron. Mater. 40, 1815–1822 (2011).

    Article  ADS  Google Scholar 

  47. A.M. Itsuno, J.D. Phillips, and S. Velicu, “Mid-wave infrared HgCdTe nBn photodetector”, Appl. Phys. Lett. 100, 161102 (2012).

    Article  ADS  Google Scholar 

  48. A.M. Itsuno, J.D. Phillips, and S. Velicu, “Design of an Auger-suppressed unipolar HgCdTe NBnN photodetector”, J. Electron. Mater. 41, 2886–2892 (2012).

    Article  ADS  Google Scholar 

  49. S. Velicu, J. Zhao, M. Morley, A.M. Itsuno, and J.D. Philips, “Theoretical and experimental investigation of MWIR HgCdTe nBn detectors”, Proc. SPIE 8268, 82682X-1–13 (2012).

    Google Scholar 

  50. M. Kopytko, A. KębŁowski, W. Gawron, P. Madejczyk, A. Kowalewski, and K. Jźówikowski, “High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD”, Opto-Electr. Rev. 21, 402–405 (2013).

    Article  ADS  Google Scholar 

  51. P. Maryniuk and A. Rogalski, “Modelling of MWIR HgCdTe complementary barrier HOT”, Solid-State Electronics 80, 96–104 (2013).

    Article  ADS  Google Scholar 

  52. E.F. Schubert, L.W. Tu. G.J. Zydzik, R.F. Kopf, A. Benvenuti and M.R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping”, Appl. Phys. Lett. 60, 466–468 (1992).

    Article  ADS  Google Scholar 

  53. S.D. Gunpala, D.Z Ting, C.J. Hill, and S.V. Bandara, U.S. Patent No. 7,737,411, 2010.

    Google Scholar 

  54. N.D. Akhavan, G. Jolley, G. Umana-Membreno, J. Antoszewski, and L. Faraone, “Performance modelling of bandgap engineered HgCdTe-based nBn infrared detectors”, Extended Abstracts, The 2013 Workshop on the Physics and Chemistry of II-VI Materials, Chicago (2013).

    Google Scholar 

  55. M. Kopytko, A. Kębłowski, W. Gawron, A. Kowalewski, “MOCVD grown HgCdTe barrier structures for high-operating temperature MWIR photodetectors”, to be published.

  56. L. Zheng, M. Tidrow, L. Aitcheson, J. O’Connor, and S. Brown, “Developing high-performance III-V superlattice IRFPAs for defense — challenges and solutions”, Proc. SPIE 7660, 7660-1–12 (2010).

    Article  ADS  Google Scholar 

  57. C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, D.Z. Ting, S.D. Gunapala, D.R. Rhiger, R.E. Kvaas, and S.F. Harris, “Demonstration of mid and long-wavelength infrared antimonide-based focal plane arrays”, Proc. SPIE 7298, 7294–04 (2009).

    Google Scholar 

  58. S.D. Gunapala, D.Z. Ting, C.J. Hill, J. Nguyen, A. Soibel, S.B. Rafol, S.A. Keo, J.M. Mumolo, M.C. Lee, J.K. Liu, and B. Yang, “Demonstration of a 1024×1024 pixel InAs-GaSb superlattice focal plane array”, Phot. Tech. Lett. 22, 1856–1858 (2010).

    Article  ADS  Google Scholar 

  59. P. Manurkar, S. Ramezani-Darvish, B.-M. Nguyen, M. Razeghi, and J. Hubbs, “High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices”, Appl. Phys. Lett. 97, 193505-1–3 (2010).

    Article  ADS  Google Scholar 

  60. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays”, J. Appl. Phys. 105, 091101 (2009).

    Article  ADS  Google Scholar 

  61. A.M. Hoang, G. Chen, A. Haddadi, and M. Razeghi, “Demnstration of high performance bias-selectable dual-band short- -/mid-wavelength infrared photodetectors based on type-II InAs/GaSb/AlSb superlattices”, Appl. Phys. Lett. 102, 011108 (2013).

    Article  ADS  Google Scholar 

  62. M. Razeghi, A.M. Hoang, A. Haddadi, G. Chen, S. Ramezani-Darvish, P. Bijjam, P. Wijewarnasuriya, and E. Decuir, “High-performance bias-selectable dual-band short-/Mid- -wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb/AlSb type-II superlattices”, Proc. SPIE 8704, 8704–54 (2013).

    ADS  Google Scholar 

  63. M. Razeghi, A. Haddadi, A.M. Hoang, G. Chen, S. Ramezani-Darvish, and P. Bijjam, “High-performance bias-selectable dual-band mid-/long-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb type-II superlattices”, Proc. SPIE 8704, 87040S (2013).

    Article  ADS  Google Scholar 

  64. M.A. Kinch, H.F. Schaake, R.L. Strong, P.K. Liao, M.J. Ohlson, J. Jacques, C-F Wan, D. Chandra, R.D. Burford, and C.A. Schaake, “High operating temperature MWIR detectors”, Proc. SPIE 7660, 76602V–1 (2010).

    Article  ADS  Google Scholar 

  65. W.W. Bewley, J.R. Lindle, C.S. Kim, M. Kim, C.L. Canedy, I. Vurgaftman, and J.R. Meyer, “Lifetime and Auger coefficients in type-II W interband cascade lasers”, Appl. Phys. Lett. 93, 041118 (2008).

    Article  ADS  Google Scholar 

  66. M.A. Kinch, Fundamentals of Infrared Detector Materials, SPIE Press, Bellingham, 2007.

    Book  Google Scholar 

  67. M.A. Kinch, ”The challenges of background limited room temperature photon detection”, The 2013 U.S. Workshop on the Physics and Chemistry of II-VI Materials, Tutorial Session, Chicago, 2013.

    Google Scholar 

  68. J. Wróbel, P. Martyniuk, E. Plis, P. Madejczyk, W. Gawron, S. Krishna, and A. Rogalski, “Dark current modeling of MWIR type-II superlattice detectors”, Proc. SPIE 8353, 8353–16 (2012).

    Google Scholar 

  69. http://www.vigo.com.pl/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kopytko.

About this article

Cite this article

Martyniuk, P., Kopytko, M. & Rogalski, A. Barrier infrared detectors. Opto-Electron. Rev. 22, 127–146 (2014). https://doi.org/10.2478/s11772-014-0187-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-014-0187-x

Keywords

Navigation