Skip to main content
Log in

Thermal resistance of GaAs/AlAs superlattices used in modern light-emitting diodes

  • Original Papers
  • Published:
Opto-Electronics Review

Abstract

Superlattices are used in modern light-emitting diodes to modify intentionally electron, phonon and/or photon transport within their volumes, which leads to their expected performance characteristics. In particular, superlattices may have a dramatic impact on device thermal properties. Superlattice thermal resistance is anisotropic and usually distinctly higher than its values in constituent bulk materials, which results from phonon reflections and/or phonon scatterings at numerous layer interfaces. In the present paper, thermal resistance of a typical superlattice of layer thicknesses neither much higher nor much lower than the phonon free path is discussed. Besides, as an important example, thermal resistance of the typical GaAs/AlAs superlattice is determined theoretically and compared with its measured values known from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Nakwaski, “Principles of VCSEL designing”, Opto-Electron. Rev. 16, 18–26 (2008).

    Article  ADS  Google Scholar 

  2. D.A. Cahill, W.H. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot, “Nanoscale thermal transport”, J. Appl. Phys. 93, 793–818 (2003).

    Article  ADS  Google Scholar 

  3. G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices”, Phys. Rev. B57, 14958–14973 (1996).

    ADS  Google Scholar 

  4. F.X. Alvarez, J. Alvarez-Quintana, D. Jou, and J.J. Rodriguez-Viejo, “Analytical expression for thermal conductivity of superlattices”, Appl. Phys. 107, 0804303 (2010).

    Google Scholar 

  5. E.T. Schwartz and R.O. Pohl, “Thermal boundary resistance”, Rev. Modern Phys. 61, 605–658 (1989).

    Article  ADS  Google Scholar 

  6. E. Gęsikowska and W. Nakwaski, “An impact of multi-layered structures of modern optoelectronic devices on their thermal properties”, Opt. Quantum Electron. 40, 205–216 (2008).

    Article  Google Scholar 

  7. M. Osiński and W. Nakwaski, “Effective thermal conductivity of 1.55-μm InGaAsP/InP vertical-cavity surface-emitting microlasers”, Electron. Lett. 29, 1015–1016, (1993).

    Article  ADS  Google Scholar 

  8. R.M. Mazo, “Theoretical studies on low temperature phenomena”, PhD Thesis, Yale University, 1985.

    Google Scholar 

  9. R. Prasher, “Acoustic mismatch model for thermal contact resistance of van der Waals contacts”, Appl. Phys. Lett. 94, 041905 (2009).

    Article  ADS  Google Scholar 

  10. M. Szymański, “Calculation of the cross-plane thermal conductivity of a quantum cascade laser active region”, J. Phys. D: Appl. Phys. 44, 085101 (2011).

    Article  ADS  Google Scholar 

  11. H. Zhao and J.B. Freud, “Phonon scattering at a rough interface between two fcc lattices”, J. Appl. Phys. 105, 013515 (2009).

    Article  ADS  Google Scholar 

  12. F.X. Alvarez and D. Jou, “Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes”, Appl. Phys. Lett. 90, 083109 (2007).

    Article  ADS  Google Scholar 

  13. F. X. Alvarez and D. Jou, “Size and frequency dependence of effective thermal conductivity in nanosystems”, Appl. Phys. Lett., vol. 103, no. 9, p. 094321, 2008.

    Google Scholar 

  14. A. Little, “The transport of heat between dissimilar solids at low temperatures”, Can. J. Phys. 37, 334–349 (1959).

    Article  ADS  Google Scholar 

  15. W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, and D.S. Katzer, “Thermal-conductivity measurements of GaAs/AlAs superlattices using a picoseconds optical pump- -and-probe technique”, Phys. Rev. B59, 8105–8113 (1999).

    Article  ADS  Google Scholar 

  16. M.S. Vitiello, G. Scamarcio, and V. Spagnolo, “Temperature dependence of thermal conductivity and boundary resistance in THz quantum cascade lasers”, IEEE J. Sel. Topics Quantum Electron. 14, 431–435 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Nakwaski.

About this article

Cite this article

Żak, D., Nakwaski, W. Thermal resistance of GaAs/AlAs superlattices used in modern light-emitting diodes. Opto-Electron. Rev. 22, 86–91 (2014). https://doi.org/10.2478/s11772-014-0181-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-014-0181-3

Keywords

Navigation