Skip to main content
Log in

Optical optimization of organic solar cell with bulk heterojunction

  • Original Papers
  • Published:
Opto-Electronics Review

Abstract

The work is devoted to the optimization of layer thickness in an organic photovoltaic cell. It presents the applied calculation method which is based on the optical transfer matrix 2×2 formalism. We present the influence of thickness of a PEDOT:PSS layer and of an active layer on the normalized modulus squared of optical electric fields distribution inside devices and on the distributions of exciton generation rate. We present the relationship between optimal thicknesses of the PEDOT:PSS layer and the active layer. We also present the influence of antireflection coating on distributions of optical electrical fields, as well as the distributions of exciton generation rate. Perpendicular and oblique illumination of the photovoltaic structure is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fraas and L. Partain, Solar Cells and Their Applications, John Wiley & Sons, Inc., Publication, New Jersey, 2010.

    Book  Google Scholar 

  2. B. Parida, S. Iniyanb, and R. Goic, “A review of solar photovoltaic technologies”, Renew Sust. Energ. Rev. 15, 1625–1636 (2011).

    Article  Google Scholar 

  3. E. Gondek, I.V. Kityk, and A. Danel, “Photovoltaic effect in single layer 1H-pyrazolo3,4-b]quinoline and 1H-pyrazolo3,4—b]quioxaline/poly(3-decylthiophene) polymer cellsbold”bold, Z Naturforschung A64, 632–638 (2009).

    Google Scholar 

  4. E. Gondek, Y. Djaoued, J. Robichaud, P. Karasiński, I.V. Kityk, A. Danel, and K.J. Plucinski, “Influence of TiO2 nanoparticles on the photovoltaic efficiency of the ITO/ PEDOT: PSS/fluorine copolymers/polythiophene:TiO2/Al architecture”, J. Mater. Sci-Mater El. 23, 2057–2064 (2012).

    Article  Google Scholar 

  5. A. Pivrikas, H. Neugebauer, and N.S. Sariciftci, “Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: A comparative review”, Sol. Energy 85, 1226–1237 (2011).

    Article  ADS  Google Scholar 

  6. G. Kalita, M. Masahiro, W. Polchi, and M. Umeno, Solid—State Electronics 54, 447–451 (2010)

    Article  ADS  Google Scholar 

  7. J. Alstrup, M. J_rgensen, A.J. Medford, and F.C. Krebs, “Ultrafast and parsimonious material screening for polymer solar cells Rusing differentially pumped slot-die coating”, Appl. Materials & Interfaces 2, 2819–2827 (2010).

    Article  Google Scholar 

  8. H. Hoppe and N.S. Sariciftci, “Organic solar cells: An over-view”, J. Mater. Res. 19, 1924–1945 (2004)

    Article  ADS  Google Scholar 

  9. P. Peumans, A. Yakimov, and S.R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, J. Appl. Phys. 93, 3693–3723 (2003).

    Article  ADS  Google Scholar 

  10. B.R. Saunders and M.L. Turner, “Nanoparticle-polymer photovoltaic cells”, Advances in Colloid and Interface Science 138, 1–23 (2008).

    Article  Google Scholar 

  11. G. Li, L. Liu, F. Wei, S. Xia, and X. Qian, “Recent progress in modelling, simulation, and optimization of polymer solar cells”, IEEE J. Photovoltaics 2, 320–340 (2012).

    Article  Google Scholar 

  12. L.A.A. Pettersson, L.S. Roman, and O. Inganäs, “Modelling photocurrent action spectra of photovoltaics based on organic thin films”, J. Appl. Phys. 86, 487–496 (1999).

    Article  ADS  Google Scholar 

  13. R. Häusermann, E. Knapp, M. Moos, N.A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis”, J. Appl. Phys. 106, 104507 (2009).

    Article  ADS  Google Scholar 

  14. A. Meyer and H. Ade, “The effect of angle of incidence on the optical field distribution within thin film organic solar cells”, J. Appl. Phys. 106, 113101 (2009).

    Article  ADS  Google Scholar 

  15. S. Jung, K.Y. Kim, Y.I. Lee, J.H. Youn, H.T. Moon, J. Jang, and J. Kim, “Optical modelling and analysis of organic solar cells with coherent multilayers and incoherent glass substrate using generalized transfer matrix method”, Jpn. J. Appl. Phys. 50, 122301–1 (2011).

    ADS  Google Scholar 

  16. G. Li, L. Liu, F. Wei, S. Xia, and X. Qian, “Recent progress in modelling, simulation, and optimization of polymer solar cells”, IEEE J. Photovoltaics 2, 320–340 (2012).

    Article  Google Scholar 

  17. E. Gondek, “Influence of substrate refractive index and anti-reflection coating on excitons generation in organic solar cell”, submitted to Opt. Quant. Electron. 46, 221–227 (2014).

    Article  Google Scholar 

  18. J. Chandrasekaran, D. Nithyaprakash, K.B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials — An overview”, Renew. Sust. Energ. Rev. 15, 1228–1238 (2011).

    Article  Google Scholar 

  19. P. Karasiński, J. Jaglarz, M. Reben, E. Skoczek, and J. Mazur, “Porous silica xerogel films as antireflective coatings. Fabrication and characterization”, Opt. Mater. 33, 1989–1994 (2011).

    Article  ADS  Google Scholar 

  20. E. Skoczek, J. Jaglarz, P. Karasiński, “Ellipsometric and spectrophotometric investigations of porous silica thin films produced by sol-gel method”, Acta Phys. Pol. A120, 732–735 (2011).

    Google Scholar 

  21. B.E. Seleh and M.C. Teich, Fundamentals of Photonics, Wiley, New York, 1991 ch.10.1B.

    Book  Google Scholar 

  22. S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of Indium Tin oxide thin films with plasma ion-assisted evaporation”, Thin Solid Films 335, 1–5 (1998).

    Article  ADS  Google Scholar 

  23. D. Zhu, W. Shen, H. Ye, X. Liu, and H. Zhen, “Determination of the optical constants of polymer light-emitting diode films from single reflection measurements”, J. Phys. D: Appl. Phys. 41, 235104 (5pp) (2008).

    Article  ADS  Google Scholar 

  24. E.D. Palik, Handbook of Optical Constants of Solids, Vol.1, Table XII Academic Press, New York, 1998.

    Google Scholar 

  25. www.pveducation.org/appendicies/standard-solar-spectra.

  26. P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, New York, 1988.

    Google Scholar 

  27. H.A. Haus, Waves and Fields in Optoelectronics, Prentice- -Hall, Inc. New Jersey, 1984

    Google Scholar 

  28. P. Karasiński, “Application of 4×4 matrix method for the modelling of planar waveguide sensors”, Proc. SPIE 4239, 229–234 (2000).

    Article  Google Scholar 

  29. P. Karasiński, “Sensor properties of planar waveguide structures with grating couplers”, Opto-Electron. Rev. 15, 168–178 (2007).

    Article  ADS  Google Scholar 

  30. P. Karasiński, “Optical uniform/gradient waveguide sensor structure — characterization”, Opto-Electron. Rev. 19, 1–9 (2011).

    Article  ADS  Google Scholar 

  31. E. Gondek and P. Karasiński, “One-dimensional photonic crystals as selective back reflectors”, Opt. Laser Technol. 48, 438–466 (2013).

    Article  ADS  Google Scholar 

  32. E. Gondek, “Optical optimization of organic solar cells”, Opt. Mater., 36, 98–101 (2013).

    Article  ADS  Google Scholar 

  33. S. van Bavel, E. Sourty, G. de With, K. Frolic, and J. Loos, “Relation between photoactive layer thickness, 3D morphology, and device performance in P3HT/PCBM bulk-heterojunction solar cells”, Macromolecules 42, 7396–7403 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gondek.

About this article

Cite this article

Gondek, E. Optical optimization of organic solar cell with bulk heterojunction. Opto-Electron. Rev. 22, 77–85 (2014). https://doi.org/10.2478/s11772-014-0180-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-014-0180-4

Keywords

Navigation