E.M.A. Hussein and E.J. Walker, “Review of one-side approaches to radiographic imaging for the detection of explosives and narcotics”, Radiat. Meas.
29, 581–591 (1998).
Article
Google Scholar
J. Reno, R.C. Fisher, L. Robinson, N. Brennan, and J. Travis, Guide for the selection of commercial explosives detection systems for low enforcement application, U.S. National Institute of Justice, Washington, 1999.
Google Scholar
G. Harding, “X-ray scatter tomography for explosives detection”, Radiat. Phys. Chem.
71, 869–881 (2004).
ADS
Article
Google Scholar
H. Vogel, “Search by X-rays applied technology”, Eur. J. Radiol.
63, 227–236 (2007).
Article
Google Scholar
Y. Liu, B.D. Sowerby, and J.R. Tickner, “Comparison of neutron and high-energy X-raydual-beam radiography for air cargo inspection”, Appl. Radiat. Isotopes
66, 463–473 (2008).
Article
Google Scholar
A. Dicken, K. Rogers, P. Evans, J. Rogers, and J.W. Chan, “The separation of X-ray diffraction patterns for threat detection”, Appl. Radiat. Isotopes
68, 439–443 (2010).
Article
Google Scholar
L. Eger, S. Do, P. Ishwar, W.C. Karl, and H. Pien, “A learning-based approach to explosives detection using multi-energy X-ray computed tomography”, Int. Conf. Acoust. Spee., pp. 2004–2007, Prague, 2011.
Google Scholar
A.A. Faust, R.E. Rothschild, P. Leblanc, J.E. McFee, “Development of a coded aperture X-ray backscatter imager for explosive device detection”, IEEE T. Nucl. Sci.
56, 299–307 (2009).
ADS
Article
Google Scholar
W. Susek, “Thermal microwave radiation for subsurface absolute temperature measurement”, Acta Phys. Pol.
A118, 1246–1249 (2010).
Google Scholar
S. Seguin, Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation. Ph.D. dissertation, Missouri S&T, 2009.
Google Scholar
M.C. Kemp, “Explosives detection by terahertz spectroscopy — a bridge too far?”, IEEE T. Terahertz Science and Technology
1, 282–292 (2011).
Article
Google Scholar
L. Yun-Shik, Principles of Terahertz Science and Technology, Springer, Berlin, 2008.
Google Scholar
D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quantum Electron.
28, 1–66 (2004).
ADS
Article
Google Scholar
N. Palka, “THz reflection spectroscopy of explosives measured by Time Domain Spectroscopy” Acta Phys. Pol.
A120, 713–715 (2011).
Google Scholar
D.J. Daniels, “Ground penetrating radar for buried landmine and IED detection, unexploded ordnance detection and mitigation” NATO Science Peace S. (2009).
Google Scholar
P. Kaczmarek, J. Karczewski, M. Łapiński, W. Miluski, M. Pasternak, and D. Silko, “Stepped frequency continuous wave radar unit for unexploded ordnance and improvised explosive device detection”, Proc. Int. Radar Symp., pp. 105–109, Leipzig, 2011.
Google Scholar
Z. Bielecki, J. Janucki, A. Kawalec, J. Mikołajczyk, N. Palka, M. Pasternak, T. Pustelny, T. Stacewicz, and J. Wojtas, “Sensors and systems for the detection of explosive devices” Metrol. Meas. Syst.
19, 3–28 (2012).
Google Scholar
E.L. Reber, C. Larry, and G. Blackwood, “Explosives detection system: development and enhancements” Sens. Imaging
8, 121–130 (2007).
ADS
Article
Google Scholar
R.C. Runkle and T.A. White, “Photon and neutron interrogation techniques for chemical explosives detection in air cargo”, Nucl. Instrum. Meth.
A603, 510–528 (2009).
ADS
Google Scholar
F.D. Brooks, M. Drosg, F.D. Smit, and C. Wikner, “Detection of explosive remnants of war by neutron thermalisation”, Appl. Radiat. Isotopes
70, 119–127 (2011).
Article
Google Scholar
S.K. Sharma, S. Jakhar, R. Shukla, A. Shyama, and C.V.S. Raob, “Explosive detection system using pulsed 14MeV neutron source”, Fusion Eng. Des.
85, 1562–1564 (2010).
Article
Google Scholar
N. Fischer, T.M. Klapötke, J. Stierstorfer, and C. Wiedemann,, “1-Nitratoethyl-5-nitriminotetrazole derivatives — Shaping future high explosives”, Polyhedron
30, 2374–2386 (2011).
Article
Google Scholar
E. Gudmundson, A. Jakobsson, and P. Stoica, “Based explosives detection-an overview” IEEE T. Signal Proces.
56, 887–894 (2009).
Google Scholar
X. Zhang, S. Balkir, M.W. Hoffman, and N. Schemm, “A robust CMOS receiver front-end for nuclear quadrupole resonance based explosives detection” IEEE Int. Symp. Circ.
S53, 1093–1096 (2010).
Google Scholar
X. Wang, P. Liu, K.A. Fox, J. Tang, J.A. Colón Santana, K. Belashchenko, P.A. Dowben, and Y. Sui, “The effects of Gd doping and oxygen vacancies on the properties of EuO films prepared via pulsed laser deposition”, IEEE Trans. Magn.
46, 1879–1882 (2010).
ADS
Article
Google Scholar
J.A.S. Smith, M. Blanz, T.J. Rayner, M.D. Rowe, S. Bedford, and K. Althoefer, “14N quadrupole resonance and 1h t1 dispersion in the explosive rdx”, J. Magn. Reson.
213, 191–196 (2011).
Article
Google Scholar
A. Gregorovic and T. Apih, “TNT detection with 14N NQR: Multipulse sequences and matched filter”, J. Magn. Reson.
198, 215–221 (2009).
ADS
Article
Google Scholar
T.M. Osa, L.M. Cerionia, J. Forguez, J.M. Olle, and D.J. Pusiola, “NQR: From imaging to explosives and drugs detection”, Physica
B389, 45–50 (2007).
ADS
Google Scholar
M. Ostafin and B. Nogaj, “14N-NQR based device for detection of explosives in landmines”, Measurement
40, 43–54 (2007).
Article
Google Scholar
S.E. Stitzel, L.J. Cowen, K.J. Albert, and D.R. Walt, “Array-to-array transfer of an artificial nose classifier”, Anal. Chem.
73, 5266–5271 (2001).
Article
Google Scholar
M.E. Koscho, R.H. Grubbs, and N.S. Lewis, “Properties of vapour detector arrays formed through plasticization of carbon black-organic polymer composites”, Anal. Chem.
74, 1307–1315 (2002).
Article
Google Scholar
H. Wohltejen and A.W. Snow, “Colloidal metal-insulator-metal ensemble chemiresistor sensor”, Anal. Chem.
70, 2856–2859 (1998).
Article
Google Scholar
T.C. Pearce, S.S. Schiffman, H.T. Nagle, and J.W. Gardner, Handbook of Machine Olfaction, edited by Wiley-VCH, Weinheim, 2003.
Google Scholar
W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, “Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, B. Pol. Acad. Sci.-Te.
56, 133–138 (2008).
Google Scholar
A. Murugarajan and G.L. Samuel, “Measurement, modelling and evaluation of surface parameter using capacitive-sensor — based measurement system” Metrol. Meas. Syst.
18, 403–418 (2011).
Google Scholar
http://science.nasa.gov/science-news/science-at-nasa/2004/06oct_enose
http://www.prenhall.com/settle/chapters/ch31.pdf
O.L. Collin, C. Niegel, K.E. DeRhodes, B. McCord, and G.P. Jackson, “Fast gas chromatography of explosive compounds using a pulsed-discharge electron capture detector”, J. Forensic Sci.
51, 815–818 (2006).
Article
Google Scholar
G. Eiceman and Z. Karpas, Ion Mobility Spectrometry. CRC Press, Boca Raton, USA, 2005.
Book
Google Scholar
L. Ebdon, E.H. Evans, A. Fisher, and S.J. Hill, An Introduction to Analytical Atomic Spectrometry, edited by John Wiley & Sons Ltd, Chichester, 1998.
Google Scholar
http://sniffexquestions.blogspot.com/2007/09/what-about-ade-100-ade-101-ade650-ade.html
http://www.scribd.com/doc/56952947/38/The-Electron-Capture-Detector
R. Wilson, C. Clavering, and A. Hutchinson, “Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT”, J. Electroanal. Chem.
557, 109–119 (2003).
Article
Google Scholar
T. Jezierski, A. Górecka-Bruzda, M. Walczak, A.H. Świergiel, M.H. Chruszczewski, and B.L. Pearson, “Operant conditioning of dogs (Canis familiaris) for identification of humans using scent lineup”, Animal Science Papers and Reports
28, 81–93 (2010)
Google Scholar
K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ringdown spectroscopy”, Appl. Phys.
B94, 396–373 (2009).
Google Scholar
K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light”, Opt. Express
17, 3673–3678 (2009).
ADS
Article
Google Scholar
N.A. Hatab, G. Eres, P.B. Hatzingerc, and B. Gua, “Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy”, J. Raman Spectrosc.
41, 1131–1136 (2010).
ADS
Article
Google Scholar
J. Smulko, M. Gnyba, and A. Kwiatkowski, “Detection of illicit chemicals by portable Raman spectrometer”, Bull. Pol. Ac.: Tech.
59, 449–452, 2011.
Google Scholar
http://www.sciencedaily.com/releases/2011/05/110509161759.htm (2011).
D.A. Cremers and L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, edited by John Wiley & Sons, online, 2006.
Book
Google Scholar
J.L. Gottfried, Jr F. C. De Lucia, C.A. Munson, and A.W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects”, Anal. Bioanal. Chem.
395, 283–300 (2009).
Article
Google Scholar
V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other residues by laser induced breakdown spectroscopy”, Spectrochim. Acta
B64, 1028–1039 (2009).
ADS
Google Scholar
P. Lucena, A. Dona, L.M. Tobaria, and J.J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy”, Spectrochim. Acta
B66, 12–20 (2011).
ADS
Google Scholar
K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, “New method of elaboration of the LIDAR signal”, Appl. Phys.
B70, 295–301 (2000).
ADS
Article
Google Scholar
http://www.as.northropgrumman.com/products/almds/assets/ALMDS_Fact_Sheet.pdf (2008).
B.M. Onat, G. Itzler, and M. Carver, “A solid-state hyperspectral imager for real time standoff explosives detection using shortwave infrared imaging”, Proc. SPIE
7310, 731004-1 (2009).
Google Scholar
S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review”, Anal. Bioanal. Chem.
395, 259–274 (2009), DOI:10.1007/ s00216-009-2844-3.
Article
Google Scholar
H. Schubert and A. Kuznetsov, Detection and disposal of improvised explosives, pp. 7–9, Springer, St. Petersburg, 2005.
Google Scholar
HITRAN 2008. High-resolution transmission molecular absorption database, http://www.hitran.com (2005).
Google Scholar
A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, and I.V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing”, Rev. Sci. Instrum.
76, 043105 (2005).
ADS
Article
Google Scholar
M. Pedersen and J. McClelland, “Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications”, Proc. SPIE
108, 5732 (2005).
ADS
Google Scholar
T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, and R. Hernberg, “Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection”, Opt. Express
13, 2453–2458 (2005).
ADS
Article
Google Scholar
http://www.sciencedaily.com/releases/2008/06/080625153328.htm (2008).
I.A. Nadezhdinskii, Ya. Ponurovskii, and M.V. Spiridonov, Explosives detection by means of nitrogen dioxide trace concentration measurements, 2011.
Google Scholar
J.M. Chalmers Mid-infrared spectroscopy. Spectroscopy in process analysis, CRC Press LLC., 117.ISBN1841270407, 1999.
Google Scholar
A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum.
59, 2544–2554 (1988).
ADS
Article
Google Scholar
K.W. Busch and M.A. Busch, “Cavity-ringdown spectroscopy, an ultratrace-absorption measurement technique”, ACS Sym. Ser.
720, American Chemical Society, Washington DC (1999).
Google Scholar
V.L. Kasyutich, C.S.E. Bale, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode”, Appl. Phys.
B76, 691–698 (2003).
ADS
Article
Google Scholar
J. Wojtas, Detection of optical radiation in NO
x
optoelectronic sensors employing cavity enhanced absorption spectroscopy. Chapter in Optoelectronics — Devices and Applications, Intech Publishers, Vienna, ISBN 978953-307-576-1, 147–172, 2011.
Google Scholar
J. Wojtas, A. Czyzewski, T. Stacewicz, and Z. Bielecki, “Sensitive detection of NO2 with Cavity Enhanced Spectroscopy”, Optica Applicata
36, 461–467 (2006).
Google Scholar
Z. Bielecki, T. Stacewicz, J. Wojtas, M. Nowakowski, and J. Mikołajczyk, Polish patent application No P.394439 (2011).
J. Wojtas and Z. Bielecki, “Signal processing system in the cavity enhanced spectroscopy”, Opto-Electron. Rev.
16, 44–51 (2008).
Article
Google Scholar
J. Wojtas, J. Mikolajczyk, M. Nowakowski, B. Rutecka, R. Medrzycki, and Z. Bielecki, “Appling CEAS method to UV, VIS, and IR spectroscopy sensors”, Bull. Pol. Ac: Tech.
59, (2011).
T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity Ring Down Spectroscopy: detection of trace amounts of matter”, Opto-Electron. Rev.
20, 77–90, (2012).
Article
Google Scholar
J. Wojtas, R. Medrzycki, B. Rutecka, J. Mikolajczyk, M. Nowakowski, D. Szabra, M. Gutowska, T. Stacewicz, and Z. Bielecki, “NO and N2O detection employing cavity enhanced technique”, Proc. SPIE
8374, 837414 (2012).
Article
Google Scholar
T. Pustelny, E. Maciak, Z. Opilski, and M. Bednorz, “Optical interferometric structures for application in gas sensors”, Optica Applicata
37, 187–194 (2007).
Google Scholar
W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, “Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, Acta Physica Polonica
A116(3), 315–320 (2009).
ADS
Google Scholar
P. Struk, T. Pustelny, K. Golaszewska, E. Kaminska, M. Borysewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO”, Opto-Electron. Rev.
19, 462–467 (2011).
ADS
Article
Google Scholar
J. Yinon, Forensic and environmental detection of explosives, edited by John Wiley & Sons, New York, 1999.
Google Scholar