Skip to main content

Towards optoelectronic detection of explosives

Abstract

Detection of explosives is an important challenge for contemporary science and technology of security systems. We present an application of NOx sensors equipped with concentrator in searching of explosives. The sensors using CRDS with blue — violet diode lasers (410 nm) as well as with QCL lasers (5.26 μm and 4.53 μm) are described. The detection method is based either on reaction of the sensors to the nitrogen oxides emitted by explosives or to NOx produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX, and HMX the detection limit better than 1 ng has been achieved.

This is a preview of subscription content, access via your institution.

References

  1. E.M.A. Hussein and E.J. Walker, “Review of one-side approaches to radiographic imaging for the detection of explosives and narcotics”, Radiat. Meas. 29, 581–591 (1998).

    Article  Google Scholar 

  2. J. Reno, R.C. Fisher, L. Robinson, N. Brennan, and J. Travis, Guide for the selection of commercial explosives detection systems for low enforcement application, U.S. National Institute of Justice, Washington, 1999.

    Google Scholar 

  3. G. Harding, “X-ray scatter tomography for explosives detection”, Radiat. Phys. Chem. 71, 869–881 (2004).

    ADS  Article  Google Scholar 

  4. H. Vogel, “Search by X-rays applied technology”, Eur. J. Radiol. 63, 227–236 (2007).

    Article  Google Scholar 

  5. Y. Liu, B.D. Sowerby, and J.R. Tickner, “Comparison of neutron and high-energy X-raydual-beam radiography for air cargo inspection”, Appl. Radiat. Isotopes 66, 463–473 (2008).

    Article  Google Scholar 

  6. A. Dicken, K. Rogers, P. Evans, J. Rogers, and J.W. Chan, “The separation of X-ray diffraction patterns for threat detection”, Appl. Radiat. Isotopes 68, 439–443 (2010).

    Article  Google Scholar 

  7. L. Eger, S. Do, P. Ishwar, W.C. Karl, and H. Pien, “A learning-based approach to explosives detection using multi-energy X-ray computed tomography”, Int. Conf. Acoust. Spee., pp. 2004–2007, Prague, 2011.

    Google Scholar 

  8. A.A. Faust, R.E. Rothschild, P. Leblanc, J.E. McFee, “Development of a coded aperture X-ray backscatter imager for explosive device detection”, IEEE T. Nucl. Sci. 56, 299–307 (2009).

    ADS  Article  Google Scholar 

  9. W. Susek, “Thermal microwave radiation for subsurface absolute temperature measurement”, Acta Phys. Pol. A118, 1246–1249 (2010).

    Google Scholar 

  10. S. Seguin, Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation. Ph.D. dissertation, Missouri S&T, 2009.

    Google Scholar 

  11. M.C. Kemp, “Explosives detection by terahertz spectroscopy — a bridge too far?”, IEEE T. Terahertz Science and Technology 1, 282–292 (2011).

    Article  Google Scholar 

  12. L. Yun-Shik, Principles of Terahertz Science and Technology, Springer, Berlin, 2008.

    Google Scholar 

  13. D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quantum Electron. 28, 1–66 (2004).

    ADS  Article  Google Scholar 

  14. N. Palka, “THz reflection spectroscopy of explosives measured by Time Domain Spectroscopy” Acta Phys. Pol. A120, 713–715 (2011).

    Google Scholar 

  15. D.J. Daniels, “Ground penetrating radar for buried landmine and IED detection, unexploded ordnance detection and mitigation” NATO Science Peace S. (2009).

    Google Scholar 

  16. P. Kaczmarek, J. Karczewski, M. Łapiński, W. Miluski, M. Pasternak, and D. Silko, “Stepped frequency continuous wave radar unit for unexploded ordnance and improvised explosive device detection”, Proc. Int. Radar Symp., pp. 105–109, Leipzig, 2011.

    Google Scholar 

  17. Z. Bielecki, J. Janucki, A. Kawalec, J. Mikołajczyk, N. Palka, M. Pasternak, T. Pustelny, T. Stacewicz, and J. Wojtas, “Sensors and systems for the detection of explosive devices” Metrol. Meas. Syst. 19, 3–28 (2012).

    Google Scholar 

  18. E.L. Reber, C. Larry, and G. Blackwood, “Explosives detection system: development and enhancements” Sens. Imaging 8, 121–130 (2007).

    ADS  Article  Google Scholar 

  19. R.C. Runkle and T.A. White, “Photon and neutron interrogation techniques for chemical explosives detection in air cargo”, Nucl. Instrum. Meth. A603, 510–528 (2009).

    ADS  Google Scholar 

  20. F.D. Brooks, M. Drosg, F.D. Smit, and C. Wikner, “Detection of explosive remnants of war by neutron thermalisation”, Appl. Radiat. Isotopes 70, 119–127 (2011).

    Article  Google Scholar 

  21. S.K. Sharma, S. Jakhar, R. Shukla, A. Shyama, and C.V.S. Raob, “Explosive detection system using pulsed 14MeV neutron source”, Fusion Eng. Des. 85, 1562–1564 (2010).

    Article  Google Scholar 

  22. N. Fischer, T.M. Klapötke, J. Stierstorfer, and C. Wiedemann,, “1-Nitratoethyl-5-nitriminotetrazole derivatives — Shaping future high explosives”, Polyhedron 30, 2374–2386 (2011).

    Article  Google Scholar 

  23. E. Gudmundson, A. Jakobsson, and P. Stoica, “Based explosives detection-an overview” IEEE T. Signal Proces. 56, 887–894 (2009).

    Google Scholar 

  24. X. Zhang, S. Balkir, M.W. Hoffman, and N. Schemm, “A robust CMOS receiver front-end for nuclear quadrupole resonance based explosives detection” IEEE Int. Symp. Circ. S53, 1093–1096 (2010).

    Google Scholar 

  25. X. Wang, P. Liu, K.A. Fox, J. Tang, J.A. Colón Santana, K. Belashchenko, P.A. Dowben, and Y. Sui, “The effects of Gd doping and oxygen vacancies on the properties of EuO films prepared via pulsed laser deposition”, IEEE Trans. Magn. 46, 1879–1882 (2010).

    ADS  Article  Google Scholar 

  26. J.A.S. Smith, M. Blanz, T.J. Rayner, M.D. Rowe, S. Bedford, and K. Althoefer, “14N quadrupole resonance and 1h t1 dispersion in the explosive rdx”, J. Magn. Reson. 213, 191–196 (2011).

    Article  Google Scholar 

  27. A. Gregorovic and T. Apih, “TNT detection with 14N NQR: Multipulse sequences and matched filter”, J. Magn. Reson. 198, 215–221 (2009).

    ADS  Article  Google Scholar 

  28. T.M. Osa, L.M. Cerionia, J. Forguez, J.M. Olle, and D.J. Pusiola, “NQR: From imaging to explosives and drugs detection”, Physica B389, 45–50 (2007).

    ADS  Google Scholar 

  29. M. Ostafin and B. Nogaj, “14N-NQR based device for detection of explosives in landmines”, Measurement 40, 43–54 (2007).

    Article  Google Scholar 

  30. S.E. Stitzel, L.J. Cowen, K.J. Albert, and D.R. Walt, “Array-to-array transfer of an artificial nose classifier”, Anal. Chem. 73, 5266–5271 (2001).

    Article  Google Scholar 

  31. M.E. Koscho, R.H. Grubbs, and N.S. Lewis, “Properties of vapour detector arrays formed through plasticization of carbon black-organic polymer composites”, Anal. Chem. 74, 1307–1315 (2002).

    Article  Google Scholar 

  32. H. Wohltejen and A.W. Snow, “Colloidal metal-insulator-metal ensemble chemiresistor sensor”, Anal. Chem. 70, 2856–2859 (1998).

    Article  Google Scholar 

  33. T.C. Pearce, S.S. Schiffman, H.T. Nagle, and J.W. Gardner, Handbook of Machine Olfaction, edited by Wiley-VCH, Weinheim, 2003.

    Google Scholar 

  34. W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, “Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, B. Pol. Acad. Sci.-Te. 56, 133–138 (2008).

    Google Scholar 

  35. A. Murugarajan and G.L. Samuel, “Measurement, modelling and evaluation of surface parameter using capacitive-sensor — based measurement system” Metrol. Meas. Syst. 18, 403–418 (2011).

    Google Scholar 

  36. http://science.nasa.gov/science-news/science-at-nasa/2004/06oct_enose

  37. http://www.prenhall.com/settle/chapters/ch31.pdf

  38. O.L. Collin, C. Niegel, K.E. DeRhodes, B. McCord, and G.P. Jackson, “Fast gas chromatography of explosive compounds using a pulsed-discharge electron capture detector”, J. Forensic Sci. 51, 815–818 (2006).

    Article  Google Scholar 

  39. G. Eiceman and Z. Karpas, Ion Mobility Spectrometry. CRC Press, Boca Raton, USA, 2005.

    Book  Google Scholar 

  40. L. Ebdon, E.H. Evans, A. Fisher, and S.J. Hill, An Introduction to Analytical Atomic Spectrometry, edited by John Wiley & Sons Ltd, Chichester, 1998.

    Google Scholar 

  41. http://sniffexquestions.blogspot.com/2007/09/what-about-ade-100-ade-101-ade650-ade.html

  42. http://www.scribd.com/doc/56952947/38/The-Electron-Capture-Detector

  43. R. Wilson, C. Clavering, and A. Hutchinson, “Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT”, J. Electroanal. Chem. 557, 109–119 (2003).

    Article  Google Scholar 

  44. T. Jezierski, A. Górecka-Bruzda, M. Walczak, A.H. Świergiel, M.H. Chruszczewski, and B.L. Pearson, “Operant conditioning of dogs (Canis familiaris) for identification of humans using scent lineup”, Animal Science Papers and Reports 28, 81–93 (2010)

    Google Scholar 

  45. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ringdown spectroscopy”, Appl. Phys. B94, 396–373 (2009).

    Google Scholar 

  46. K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light”, Opt. Express 17, 3673–3678 (2009).

    ADS  Article  Google Scholar 

  47. N.A. Hatab, G. Eres, P.B. Hatzingerc, and B. Gua, “Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy”, J. Raman Spectrosc. 41, 1131–1136 (2010).

    ADS  Article  Google Scholar 

  48. J. Smulko, M. Gnyba, and A. Kwiatkowski, “Detection of illicit chemicals by portable Raman spectrometer”, Bull. Pol. Ac.: Tech. 59, 449–452, 2011.

    Google Scholar 

  49. http://www.sciencedaily.com/releases/2011/05/110509161759.htm (2011).

  50. D.A. Cremers and L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, edited by John Wiley & Sons, online, 2006.

    Book  Google Scholar 

  51. J.L. Gottfried, Jr F. C. De Lucia, C.A. Munson, and A.W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects”, Anal. Bioanal. Chem. 395, 283–300 (2009).

    Article  Google Scholar 

  52. V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other residues by laser induced breakdown spectroscopy”, Spectrochim. Acta B64, 1028–1039 (2009).

    ADS  Google Scholar 

  53. P. Lucena, A. Dona, L.M. Tobaria, and J.J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy”, Spectrochim. Acta B66, 12–20 (2011).

    ADS  Google Scholar 

  54. K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, “New method of elaboration of the LIDAR signal”, Appl. Phys. B70, 295–301 (2000).

    ADS  Article  Google Scholar 

  55. http://www.as.northropgrumman.com/products/almds/assets/ALMDS_Fact_Sheet.pdf (2008).

  56. B.M. Onat, G. Itzler, and M. Carver, “A solid-state hyperspectral imager for real time standoff explosives detection using shortwave infrared imaging”, Proc. SPIE 7310, 731004-1 (2009).

    Google Scholar 

  57. S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review”, Anal. Bioanal. Chem. 395, 259–274 (2009), DOI:10.1007/ s00216-009-2844-3.

    Article  Google Scholar 

  58. H. Schubert and A. Kuznetsov, Detection and disposal of improvised explosives, pp. 7–9, Springer, St. Petersburg, 2005.

    Google Scholar 

  59. HITRAN 2008. High-resolution transmission molecular absorption database, http://www.hitran.com (2005).

    Google Scholar 

  60. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, and I.V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing”, Rev. Sci. Instrum. 76, 043105 (2005).

    ADS  Article  Google Scholar 

  61. M. Pedersen and J. McClelland, “Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications”, Proc. SPIE 108, 5732 (2005).

    ADS  Google Scholar 

  62. T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, and R. Hernberg, “Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection”, Opt. Express 13, 2453–2458 (2005).

    ADS  Article  Google Scholar 

  63. http://www.sciencedaily.com/releases/2008/06/080625153328.htm (2008).

  64. I.A. Nadezhdinskii, Ya. Ponurovskii, and M.V. Spiridonov, Explosives detection by means of nitrogen dioxide trace concentration measurements, 2011.

    Google Scholar 

  65. J.M. Chalmers Mid-infrared spectroscopy. Spectroscopy in process analysis, CRC Press LLC., 117.ISBN1841270407, 1999.

    Google Scholar 

  66. A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2554 (1988).

    ADS  Article  Google Scholar 

  67. K.W. Busch and M.A. Busch, “Cavity-ringdown spectroscopy, an ultratrace-absorption measurement technique”, ACS Sym. Ser. 720, American Chemical Society, Washington DC (1999).

    Google Scholar 

  68. V.L. Kasyutich, C.S.E. Bale, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode”, Appl. Phys. B76, 691–698 (2003).

    ADS  Article  Google Scholar 

  69. J. Wojtas, Detection of optical radiation in NO x optoelectronic sensors employing cavity enhanced absorption spectroscopy. Chapter in Optoelectronics — Devices and Applications, Intech Publishers, Vienna, ISBN 978953-307-576-1, 147–172, 2011.

    Google Scholar 

  70. J. Wojtas, A. Czyzewski, T. Stacewicz, and Z. Bielecki, “Sensitive detection of NO2 with Cavity Enhanced Spectroscopy”, Optica Applicata 36, 461–467 (2006).

    Google Scholar 

  71. Z. Bielecki, T. Stacewicz, J. Wojtas, M. Nowakowski, and J. Mikołajczyk, Polish patent application No P.394439 (2011).

  72. J. Wojtas and Z. Bielecki, “Signal processing system in the cavity enhanced spectroscopy”, Opto-Electron. Rev. 16, 44–51 (2008).

    Article  Google Scholar 

  73. J. Wojtas, J. Mikolajczyk, M. Nowakowski, B. Rutecka, R. Medrzycki, and Z. Bielecki, “Appling CEAS method to UV, VIS, and IR spectroscopy sensors”, Bull. Pol. Ac: Tech. 59, (2011).

  74. T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity Ring Down Spectroscopy: detection of trace amounts of matter”, Opto-Electron. Rev. 20, 77–90, (2012).

    Article  Google Scholar 

  75. J. Wojtas, R. Medrzycki, B. Rutecka, J. Mikolajczyk, M. Nowakowski, D. Szabra, M. Gutowska, T. Stacewicz, and Z. Bielecki, “NO and N2O detection employing cavity enhanced technique”, Proc. SPIE 8374, 837414 (2012).

    Article  Google Scholar 

  76. T. Pustelny, E. Maciak, Z. Opilski, and M. Bednorz, “Optical interferometric structures for application in gas sensors”, Optica Applicata 37, 187–194 (2007).

    Google Scholar 

  77. W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, “Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, Acta Physica Polonica A116(3), 315–320 (2009).

    ADS  Google Scholar 

  78. P. Struk, T. Pustelny, K. Golaszewska, E. Kaminska, M. Borysewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO”, Opto-Electron. Rev. 19, 462–467 (2011).

    ADS  Article  Google Scholar 

  79. J. Yinon, Forensic and environmental detection of explosives, edited by John Wiley & Sons, New York, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wojtas.

About this article

Cite this article

Wojtas, J., Stacewicz, T., Bielecki, Z. et al. Towards optoelectronic detection of explosives. Opto-Electron. Rev. 21, 210–219 (2013). https://doi.org/10.2478/s11772-013-0082-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-013-0082-x

Keywords

  • explosives detection
  • absorption spectroscopy
  • laser spectroscopy