Opto-Electronics Review

, Volume 21, Issue 2, pp 210–219 | Cite as

Towards optoelectronic detection of explosives

  • J. WojtasEmail author
  • T. Stacewicz
  • Z. Bielecki
  • B. Rutecka
  • R. Medrzycki
  • J. Mikolajczyk
Original papers


Detection of explosives is an important challenge for contemporary science and technology of security systems. We present an application of NOx sensors equipped with concentrator in searching of explosives. The sensors using CRDS with blue — violet diode lasers (410 nm) as well as with QCL lasers (5.26 μm and 4.53 μm) are described. The detection method is based either on reaction of the sensors to the nitrogen oxides emitted by explosives or to NOx produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX, and HMX the detection limit better than 1 ng has been achieved.


explosives detection absorption spectroscopy laser spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.M.A. Hussein and E.J. Walker, “Review of one-side approaches to radiographic imaging for the detection of explosives and narcotics”, Radiat. Meas. 29, 581–591 (1998).CrossRefGoogle Scholar
  2. 2.
    J. Reno, R.C. Fisher, L. Robinson, N. Brennan, and J. Travis, Guide for the selection of commercial explosives detection systems for low enforcement application, U.S. National Institute of Justice, Washington, 1999.Google Scholar
  3. 3.
    G. Harding, “X-ray scatter tomography for explosives detection”, Radiat. Phys. Chem. 71, 869–881 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    H. Vogel, “Search by X-rays applied technology”, Eur. J. Radiol. 63, 227–236 (2007).CrossRefGoogle Scholar
  5. 5.
    Y. Liu, B.D. Sowerby, and J.R. Tickner, “Comparison of neutron and high-energy X-raydual-beam radiography for air cargo inspection”, Appl. Radiat. Isotopes 66, 463–473 (2008).CrossRefGoogle Scholar
  6. 6.
    A. Dicken, K. Rogers, P. Evans, J. Rogers, and J.W. Chan, “The separation of X-ray diffraction patterns for threat detection”, Appl. Radiat. Isotopes 68, 439–443 (2010).CrossRefGoogle Scholar
  7. 7.
    L. Eger, S. Do, P. Ishwar, W.C. Karl, and H. Pien, “A learning-based approach to explosives detection using multi-energy X-ray computed tomography”, Int. Conf. Acoust. Spee., pp. 2004–2007, Prague, 2011.Google Scholar
  8. 8.
    A.A. Faust, R.E. Rothschild, P. Leblanc, J.E. McFee, “Development of a coded aperture X-ray backscatter imager for explosive device detection”, IEEE T. Nucl. Sci. 56, 299–307 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    W. Susek, “Thermal microwave radiation for subsurface absolute temperature measurement”, Acta Phys. Pol. A118, 1246–1249 (2010).Google Scholar
  10. 10.
    S. Seguin, Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation. Ph.D. dissertation, Missouri S&T, 2009.Google Scholar
  11. 11.
    M.C. Kemp, “Explosives detection by terahertz spectroscopy — a bridge too far?”, IEEE T. Terahertz Science and Technology 1, 282–292 (2011).CrossRefGoogle Scholar
  12. 12.
    L. Yun-Shik, Principles of Terahertz Science and Technology, Springer, Berlin, 2008.Google Scholar
  13. 13.
    D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quantum Electron. 28, 1–66 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    N. Palka, “THz reflection spectroscopy of explosives measured by Time Domain Spectroscopy” Acta Phys. Pol. A120, 713–715 (2011).Google Scholar
  15. 15.
    D.J. Daniels, “Ground penetrating radar for buried landmine and IED detection, unexploded ordnance detection and mitigation” NATO Science Peace S. (2009).Google Scholar
  16. 16.
    P. Kaczmarek, J. Karczewski, M. Łapiński, W. Miluski, M. Pasternak, and D. Silko, “Stepped frequency continuous wave radar unit for unexploded ordnance and improvised explosive device detection”, Proc. Int. Radar Symp., pp. 105–109, Leipzig, 2011.Google Scholar
  17. 17.
    Z. Bielecki, J. Janucki, A. Kawalec, J. Mikołajczyk, N. Palka, M. Pasternak, T. Pustelny, T. Stacewicz, and J. Wojtas, “Sensors and systems for the detection of explosive devices” Metrol. Meas. Syst. 19, 3–28 (2012).Google Scholar
  18. 18.
    E.L. Reber, C. Larry, and G. Blackwood, “Explosives detection system: development and enhancements” Sens. Imaging 8, 121–130 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    R.C. Runkle and T.A. White, “Photon and neutron interrogation techniques for chemical explosives detection in air cargo”, Nucl. Instrum. Meth. A603, 510–528 (2009).ADSGoogle Scholar
  20. 20.
    F.D. Brooks, M. Drosg, F.D. Smit, and C. Wikner, “Detection of explosive remnants of war by neutron thermalisation”, Appl. Radiat. Isotopes 70, 119–127 (2011).CrossRefGoogle Scholar
  21. 21.
    S.K. Sharma, S. Jakhar, R. Shukla, A. Shyama, and C.V.S. Raob, “Explosive detection system using pulsed 14MeV neutron source”, Fusion Eng. Des. 85, 1562–1564 (2010).CrossRefGoogle Scholar
  22. 22.
    N. Fischer, T.M. Klapötke, J. Stierstorfer, and C. Wiedemann,, “1-Nitratoethyl-5-nitriminotetrazole derivatives — Shaping future high explosives”, Polyhedron 30, 2374–2386 (2011).CrossRefGoogle Scholar
  23. 23.
    E. Gudmundson, A. Jakobsson, and P. Stoica, “Based explosives detection-an overview” IEEE T. Signal Proces. 56, 887–894 (2009).Google Scholar
  24. 24.
    X. Zhang, S. Balkir, M.W. Hoffman, and N. Schemm, “A robust CMOS receiver front-end for nuclear quadrupole resonance based explosives detection” IEEE Int. Symp. Circ. S53, 1093–1096 (2010).Google Scholar
  25. 25.
    X. Wang, P. Liu, K.A. Fox, J. Tang, J.A. Colón Santana, K. Belashchenko, P.A. Dowben, and Y. Sui, “The effects of Gd doping and oxygen vacancies on the properties of EuO films prepared via pulsed laser deposition”, IEEE Trans. Magn. 46, 1879–1882 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    J.A.S. Smith, M. Blanz, T.J. Rayner, M.D. Rowe, S. Bedford, and K. Althoefer, “14N quadrupole resonance and 1h t1 dispersion in the explosive rdx”, J. Magn. Reson. 213, 191–196 (2011).CrossRefGoogle Scholar
  27. 27.
    A. Gregorovic and T. Apih, “TNT detection with 14N NQR: Multipulse sequences and matched filter”, J. Magn. Reson. 198, 215–221 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    T.M. Osa, L.M. Cerionia, J. Forguez, J.M. Olle, and D.J. Pusiola, “NQR: From imaging to explosives and drugs detection”, Physica B389, 45–50 (2007).ADSGoogle Scholar
  29. 29.
    M. Ostafin and B. Nogaj, “14N-NQR based device for detection of explosives in landmines”, Measurement 40, 43–54 (2007).CrossRefGoogle Scholar
  30. 30.
    S.E. Stitzel, L.J. Cowen, K.J. Albert, and D.R. Walt, “Array-to-array transfer of an artificial nose classifier”, Anal. Chem. 73, 5266–5271 (2001).CrossRefGoogle Scholar
  31. 31.
    M.E. Koscho, R.H. Grubbs, and N.S. Lewis, “Properties of vapour detector arrays formed through plasticization of carbon black-organic polymer composites”, Anal. Chem. 74, 1307–1315 (2002).CrossRefGoogle Scholar
  32. 32.
    H. Wohltejen and A.W. Snow, “Colloidal metal-insulator-metal ensemble chemiresistor sensor”, Anal. Chem. 70, 2856–2859 (1998).CrossRefGoogle Scholar
  33. 33.
    T.C. Pearce, S.S. Schiffman, H.T. Nagle, and J.W. Gardner, Handbook of Machine Olfaction, edited by Wiley-VCH, Weinheim, 2003.Google Scholar
  34. 34.
    W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, “Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, B. Pol. Acad. Sci.-Te. 56, 133–138 (2008).Google Scholar
  35. 35.
    A. Murugarajan and G.L. Samuel, “Measurement, modelling and evaluation of surface parameter using capacitive-sensor — based measurement system” Metrol. Meas. Syst. 18, 403–418 (2011).Google Scholar
  36. 36.
  37. 37.
  38. 38.
    O.L. Collin, C. Niegel, K.E. DeRhodes, B. McCord, and G.P. Jackson, “Fast gas chromatography of explosive compounds using a pulsed-discharge electron capture detector”, J. Forensic Sci. 51, 815–818 (2006).CrossRefGoogle Scholar
  39. 39.
    G. Eiceman and Z. Karpas, Ion Mobility Spectrometry. CRC Press, Boca Raton, USA, 2005.CrossRefGoogle Scholar
  40. 40.
    L. Ebdon, E.H. Evans, A. Fisher, and S.J. Hill, An Introduction to Analytical Atomic Spectrometry, edited by John Wiley & Sons Ltd, Chichester, 1998.Google Scholar
  41. 41.
  42. 42.
  43. 43.
    R. Wilson, C. Clavering, and A. Hutchinson, “Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT”, J. Electroanal. Chem. 557, 109–119 (2003).CrossRefGoogle Scholar
  44. 44.
    T. Jezierski, A. Górecka-Bruzda, M. Walczak, A.H. Świergiel, M.H. Chruszczewski, and B.L. Pearson, “Operant conditioning of dogs (Canis familiaris) for identification of humans using scent lineup”, Animal Science Papers and Reports 28, 81–93 (2010)Google Scholar
  45. 45.
    K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ringdown spectroscopy”, Appl. Phys. B94, 396–373 (2009).Google Scholar
  46. 46.
    K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyżewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light”, Opt. Express 17, 3673–3678 (2009).ADSCrossRefGoogle Scholar
  47. 47.
    N.A. Hatab, G. Eres, P.B. Hatzingerc, and B. Gua, “Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surface-enhanced Raman spectroscopy”, J. Raman Spectrosc. 41, 1131–1136 (2010).ADSCrossRefGoogle Scholar
  48. 48.
    J. Smulko, M. Gnyba, and A. Kwiatkowski, “Detection of illicit chemicals by portable Raman spectrometer”, Bull. Pol. Ac.: Tech. 59, 449–452, 2011.Google Scholar
  49. 49.
  50. 50.
    D.A. Cremers and L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, edited by John Wiley & Sons, online, 2006.CrossRefGoogle Scholar
  51. 51.
    J.L. Gottfried, Jr F. C. De Lucia, C.A. Munson, and A.W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects”, Anal. Bioanal. Chem. 395, 283–300 (2009).CrossRefGoogle Scholar
  52. 52.
    V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, “Analysis of explosive and other residues by laser induced breakdown spectroscopy”, Spectrochim. Acta B64, 1028–1039 (2009).ADSGoogle Scholar
  53. 53.
    P. Lucena, A. Dona, L.M. Tobaria, and J.J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy”, Spectrochim. Acta B66, 12–20 (2011).ADSGoogle Scholar
  54. 54.
    K. Stelmaszczyk, A. Czyżewski, A. Szymański, A. Pietruczuk, S. Chudzyński, K. Ernst, and T. Stacewicz, “New method of elaboration of the LIDAR signal”, Appl. Phys. B70, 295–301 (2000).ADSCrossRefGoogle Scholar
  55. 55.
  56. 56.
    B.M. Onat, G. Itzler, and M. Carver, “A solid-state hyperspectral imager for real time standoff explosives detection using shortwave infrared imaging”, Proc. SPIE 7310, 731004-1 (2009).Google Scholar
  57. 57.
    S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review”, Anal. Bioanal. Chem. 395, 259–274 (2009), DOI:10.1007/ s00216-009-2844-3.CrossRefGoogle Scholar
  58. 58.
    H. Schubert and A. Kuznetsov, Detection and disposal of improvised explosives, pp. 7–9, Springer, St. Petersburg, 2005.Google Scholar
  59. 59.
    HITRAN 2008. High-resolution transmission molecular absorption database, (2005).Google Scholar
  60. 60.
    A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, and I.V. Morozov, “Applications of quartz tuning forks in spectroscopic gas sensing”, Rev. Sci. Instrum. 76, 043105 (2005).ADSCrossRefGoogle Scholar
  61. 61.
    M. Pedersen and J. McClelland, “Optimized capacitive MEMS microphone for photoacoustic spectroscopy (PAS) applications”, Proc. SPIE 108, 5732 (2005).ADSGoogle Scholar
  62. 62.
    T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, and R. Hernberg, “Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection”, Opt. Express 13, 2453–2458 (2005).ADSCrossRefGoogle Scholar
  63. 63.
  64. 64.
    I.A. Nadezhdinskii, Ya. Ponurovskii, and M.V. Spiridonov, Explosives detection by means of nitrogen dioxide trace concentration measurements, 2011.Google Scholar
  65. 65.
    J.M. Chalmers Mid-infrared spectroscopy. Spectroscopy in process analysis, CRC Press LLC., 117.ISBN1841270407, 1999.Google Scholar
  66. 66.
    A. O’Keefe and D.A.G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources”, Rev. Sci. Instrum. 59, 2544–2554 (1988).ADSCrossRefGoogle Scholar
  67. 67.
    K.W. Busch and M.A. Busch, “Cavity-ringdown spectroscopy, an ultratrace-absorption measurement technique”, ACS Sym. Ser. 720, American Chemical Society, Washington DC (1999).Google Scholar
  68. 68.
    V.L. Kasyutich, C.S.E. Bale, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, and R.P. Wayne, “Cavity-enhanced absorption: detection of nitrogen dioxide and iodine monoxide using a violet laser diode”, Appl. Phys. B76, 691–698 (2003).ADSCrossRefGoogle Scholar
  69. 69.
    J. Wojtas, Detection of optical radiation in NO x optoelectronic sensors employing cavity enhanced absorption spectroscopy. Chapter in Optoelectronics — Devices and Applications, Intech Publishers, Vienna, ISBN 978953-307-576-1, 147–172, 2011.Google Scholar
  70. 70.
    J. Wojtas, A. Czyzewski, T. Stacewicz, and Z. Bielecki, “Sensitive detection of NO2 with Cavity Enhanced Spectroscopy”, Optica Applicata 36, 461–467 (2006).Google Scholar
  71. 71.
    Z. Bielecki, T. Stacewicz, J. Wojtas, M. Nowakowski, and J. Mikołajczyk, Polish patent application No P.394439 (2011).Google Scholar
  72. 72.
    J. Wojtas and Z. Bielecki, “Signal processing system in the cavity enhanced spectroscopy”, Opto-Electron. Rev. 16, 44–51 (2008).CrossRefGoogle Scholar
  73. 73.
    J. Wojtas, J. Mikolajczyk, M. Nowakowski, B. Rutecka, R. Medrzycki, and Z. Bielecki, “Appling CEAS method to UV, VIS, and IR spectroscopy sensors”, Bull. Pol. Ac: Tech. 59, (2011).Google Scholar
  74. 74.
    T. Stacewicz, J. Wojtas, Z. Bielecki, M. Nowakowski, J. Mikołajczyk, R. Mędrzycki, and B. Rutecka, “Cavity Ring Down Spectroscopy: detection of trace amounts of matter”, Opto-Electron. Rev. 20, 77–90, (2012).CrossRefGoogle Scholar
  75. 75.
    J. Wojtas, R. Medrzycki, B. Rutecka, J. Mikolajczyk, M. Nowakowski, D. Szabra, M. Gutowska, T. Stacewicz, and Z. Bielecki, “NO and N2O detection employing cavity enhanced technique”, Proc. SPIE 8374, 837414 (2012).CrossRefGoogle Scholar
  76. 76.
    T. Pustelny, E. Maciak, Z. Opilski, and M. Bednorz, “Optical interferometric structures for application in gas sensors”, Optica Applicata 37, 187–194 (2007).Google Scholar
  77. 77.
    W. Jakubik, M. Urbanczyk, E. Maciak, and T. Pustelny, “Bilayer structures of NiOx and Pd in surface acoustic wave an electrical gas sensor systems”, Acta Physica Polonica A116(3), 315–320 (2009).ADSGoogle Scholar
  78. 78.
    P. Struk, T. Pustelny, K. Golaszewska, E. Kaminska, M. Borysewicz, M. Ekielski, and A. Piotrowska, “Photonic structures with grating couplers based on ZnO”, Opto-Electron. Rev. 19, 462–467 (2011).ADSCrossRefGoogle Scholar
  79. 79.
    J. Yinon, Forensic and environmental detection of explosives, edited by John Wiley & Sons, New York, 1999.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2013

Authors and Affiliations

  • J. Wojtas
    • 1
    Email author
  • T. Stacewicz
    • 2
  • Z. Bielecki
    • 1
  • B. Rutecka
    • 1
  • R. Medrzycki
    • 1
  • J. Mikolajczyk
    • 1
  1. 1.Institute of OptoelectronicsMilitary University of TechnologyWarsawPoland
  2. 2.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations