Skip to main content
Log in

Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue

  • Original papers
  • Published:
Opto-Electronics Review

Abstract

The near infrared spectroscopy may be implemented using various optoelectronic techniques, however, most of them do not allow to carry out measurements at short source-detector separation. We propose a method, based on time-gated intensified CCD camera, which allows for contactless measurements and can be carried out at short source-detector separation. This technique was tested on a phantom with absorbing inclusions buried in an optically turbid medium which mimics local changes in oxygenation of the brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Litscher and G. Schwarz, Transcranial Cerebral Oximetry, Pabst Science Publishers, Lengerich, 1997.

    Google Scholar 

  2. M. Kacprzak, A. Liebert, W. Staszkiewicz, A. Gabrusiewicz, P. Sawosz, G. Madycki, and R. Maniewski, “Application of time-resolved optical brain imager in monitoring of cerebral oxygenation during carotid surgery”, J. Biomed. Opt. 17, 016002 (2011).

    Article  Google Scholar 

  3. C. Terborg, S. Bramer, S. Harscher, M. Simon, and O.W. Witte, “Bedside assessment of cerebral perfusion reductions in patients with acute ischaemic stroke by near-infrared spectroscopy and indocyanine green”, J. Neurol. Neurosur. Ps. 75, 38–42 (2004).

    Google Scholar 

  4. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance”, Neuroimage 24, 426–35 (2005).

    Article  Google Scholar 

  5. E. Keller, A. Nadler, H. Alkadhi, S.S. Kollias, Y. Yonekawa, and P. Niederer, “Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution”, Neuroimage 20, 828–39 (2003).

    Article  Google Scholar 

  6. A. Liebert, P. Sawosz, D. Milej, M. Kacprzak, W. Weigl, M. Botwicz, J. Maczewska, K. Fronczewska, E. Mayzner-Zawadzka, L. Krolicki, and R. Maniewski, “Assessment of inflow and washout of indocyanine green in the adult human brain by monitoring of diffuse reflectance at large source-detector separation”, J. Biomed. Opt. 16, 046011 (2011).

    Article  ADS  Google Scholar 

  7. B.W. Zeff, B.R. White, H. Dehghani, B.L. Schlaggar, and J.P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography”, P. Natl. Acad. Sci. USA 104, 12169–74 (2007).

    Article  ADS  Google Scholar 

  8. D.A. Boas, A.M. Dale, and M.A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy”, Neuroimage 23, S275–88 (2004).

    Article  Google Scholar 

  9. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue”, Rev. Sci. Instrum. 69, 3457–3481 (1998)

    Article  ADS  Google Scholar 

  10. B. Chance, H.Y. Ma, and S. Nioka, “Quantitative brain tissue oximetry, phase spectroscopy and imaging the range of homeostasis in piglet brain” in Proc. Oxygen Transport To Tissue XXIV, pp. 13–18, Philadelphia, 2003.

  11. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved optical imager for assessment of cerebral oxygenation”, J. Biomed. Opt. 12, 034019 (2007).

    Article  ADS  Google Scholar 

  12. B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods”, Appl. Opt. 44, 1942–7 (2005).

    Article  ADS  Google Scholar 

  13. J. Selb, J.J. Stott, M.A. Franceschini, A.G. Sorensen, and D.A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation”, J. Biomed. Opt. 10, 11013 (2005).

    Article  Google Scholar 

  14. H. Wabnitz, M. Moeller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain”, Adv. Exp. Med. Biol. 662, 143–148 (2010).

    Article  Google Scholar 

  15. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, F. Paglia, and R. Cubeddu, “Multi-channel time-resolved system for functional near infrared spectroscopy”, Opt. Express 14, 5418–32 (2006).

    Article  ADS  Google Scholar 

  16. H. Wabnitz, M. Moller, A. Liebert, H. Obrig, J. Steinbrink, and R. Macdonald, “Time-resolved near-infrared spectroscopy and imaging of the adult human brain”, Adv. Exp. Med. Biol. 662, 143–8 (2010).

    Article  Google Scholar 

  17. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multichannel time-resolved tissue oximeter for functional imaging of the brain”, IEEE T. Instrum. Meas. 55, 85–90 (2006).

    Article  Google Scholar 

  18. M. Wolf, U. Wolf, V. Toronov, A. Michalos, L.A. Paunescu, J.H. Choi, and E. Gratton, “Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study”, Neuroimage 16, 704–12 (2002).

    Article  Google Scholar 

  19. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging”, Phys. Rev. Lett. 95, 078101 (2005).

    Article  ADS  Google Scholar 

  20. J. Selb, D.K. Joseph, and D.A. Boas, “Time-gated optical system for depth-resolved functional brain imaging”, J. Biomed. Opt. 11, 044008 (2006).

    Article  ADS  Google Scholar 

  21. C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera”, J. Phys. D. Appl. Phys. 36, 1675–1681 (2003).

    Article  ADS  Google Scholar 

  22. Q. Zhao, L. Spinelli, A. Bassi, G. Valentini, D. Contini, A. Torricelli, R. Cubeddu, G. Zaccanti, F. Martelli, and A. Pifferi, “Functional tomography using a time-gated ICCD camera”, Biomed. Opt. Express 2, 705–16 (2011).

    Article  Google Scholar 

  23. P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies”, J. Biomed. Opt. 15, 066025 (2010).

    Article  ADS  Google Scholar 

  24. M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A.D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation”, Opt. Express 20, 283–90 (2012).

    Article  ADS  Google Scholar 

  25. LaVision, System-Manual PicoStar HR, LaVision GmbH, 2003.

  26. M. Niemz, Laser-tissue Interactions Fundamentals and Applications, 3rd enlarged edition Springer-Verlag, Berlin, 2003.

    Google Scholar 

  27. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium -phantom study”, Opto-Electron. Rev. 18, 37–47 (2010).

    Article  ADS  Google Scholar 

  28. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons”, Appl. Opt. 43, 3037–47 (2004).

    Article  ADS  Google Scholar 

  29. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation”, Phys. Med. Biol. 47, 4131–44 (2002).

    Article  Google Scholar 

  30. I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: Preliminary study for functional brain mapping”, J. Biomed. Opt. 11, 054006 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sawosz.

About this article

Cite this article

Sawosz, P., Zolek, N., Kacprzak, M. et al. Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue. Opto-Electron. Rev. 20, 309–314 (2012). https://doi.org/10.2478/s11772-012-0041-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11772-012-0041-y

Keywords

Navigation