W. Herschel, “Experiments on the refrangibility of the invisible rays of the Sun,” Phil. Trans. Roy. Soc. London
90, 284–292 (1800).
Google Scholar
http://coolcosmos.ipac.caltech.edu/sitemap.html#cosmicclas sroom
E.S. Barr, “Historical survey of the early development of the infrared spectral region,” Amer. J. Phys.
28, 42–54 (1960).
ADS
Article
Google Scholar
E.S. Barr, “The infrared pioneers — I. Sir William Herschel,” Infrared Phys.
1, 1 (1961).
ADS
Article
Google Scholar
R.A. Smith, F.E. Jones, and R.P. Chasmar, The Detection and Measurement of Infrared Radiation, Clarendon, Oxford, 1958.
Google Scholar
P.W. Kruse, L.D. McGlauchlin and R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962.
Google Scholar
R.D. Hudson, Infrared System Engineering, Wiley-Interscience, New Jersey, 1969.
Google Scholar
E.S. Barr, “The infrared pioneers — II. Macedonio Melloni,” Infrared Phys.
2, 67–73 (1962).
ADS
Article
Google Scholar
E.S. Barr, “The Infrared Pioneers — III. Samuel Pierpont Langley,” Infrared Phys.
3, 195–206 (1963).
ADS
Article
Google Scholar
L.M. Biberman and R.L. Sendall, “Chapter 1. Introduction: A brief history of imaging devices for night vision,” in Electro-Optical Imaging: System Performance and Modeling, edited by L.M. Biberman, pp. 1-1–1-26, SPIE Press, Bellingham, 2000.
Google Scholar
J. Caniou, Passive Infrared Detection: Theory and Application, Kluwer Academic Publishers, Dordrecht, 1999
Google Scholar
K. Herrmann and L. Walther, Wissensspeicher Infrarottechnik (Store of Knowledge in Infrared Technology), Fachbuchverlag, Leipzig, 1990.
Google Scholar
T.J. Seebeck, “Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz,” Abh. Deutsch. Akad. Wiss. Berlin, 265–373 (1822).
http://catalogue.museogalileo.it/section/ElectricityMagnetism.html.
http://earthobservatory.nasa.gov/Features/Langley/langley_2.php.
S.P. Langley, “The bolometer and radiant energy,” Proc. Am. Academy of Arts and Sciences
16, 342–358 (May 1880–Jun. 1881).
C.D. Walcott, Samuel Pierpont Langley, City of Washington, The National Academy of Science, April, 1912.
Google Scholar
W. Smith, “Effect of light on selenium during the passage of an electric current,” Nature
7, 303 (1873).
Google Scholar
M. F. Doty, Selenium, List of References, 1917–1925, New York Public Library, New York, 1927.
Google Scholar
Applied Optics (November, 1963), commemorative issue with extensive material on Coblentz’s scientific work
W.F. Meggers, William Weber Coblentz.1873–196, National Academy of Science, Washingthon, 1967.
Google Scholar
H. Hertz, “Ueber den Einfluss des ultravioletten Lichtes auf die electrische Entladung,” Annalen der Physik
267(8) 983–1000 (1887).
ADS
Article
Google Scholar
J. Elster, H. Geitel, “Ueber die Entladung negativ electrischer Korper durch das Sonnen- und Tageslicht,” Ann. Physik 497–514 (1889).
F. Braun, “Uber die Stromleitung durch Schwefelmetalic,” Annalen der Physik and Chemie
153(4), 556–563 (1874).
Google Scholar
J. C. Bose, “Detector for electrical disturbances,” U. S. Patent 755,840 (Filed September 30, 1901. Issued March 29, 1904).
T.W. Case, “Notes on the change of resistance of certain substrates in light,” Phys. Rev.
9, 305–310 (1917).
ADS
Article
Google Scholar
S.F. Johnson, A History of Light and Colour Measurement. Science in the Shadows, IOP Publishing Ltd, Bristol, 2001.
Book
Google Scholar
T.W. Case, “The thalofide cell — a new photoelectric substance,” Phys. Rev.
15, 289 (1920).
ADS
Article
Google Scholar
G. Holst, J.H. de Boer, M.C. Teves, and C.F. Veenemans, “Foto-electrische cel en inrichting waarmede uit een primair, door directe lichtstralen gevormd beeld een geheel ofnagenoeg geheel conform secundair optisch beeld kan,” Dutch Patent 27062 (1928), British Patent 326200; D.R.P. 535208; “An apparatus for the transformation of light of long wavelength into light of short wavelength,” Physica
1, 297–305 (1934).
L. Koller, “Photoelectric emission from thin films of caesium,” Phys. Rev.
36, 1639–1647 (1930); N.R. Campbell, ”Photoelectric emission of thin films,” Phil. Mag.
12, 173–185(1931).
ADS
Article
Google Scholar
A.M. Glover, “A review of the development of sensitive phototubes,” Proc. IRE, 413–423, August 1941.
S. Asao and M. Suzuki, “Improvement of thin film caesium photoelectric tube,” Proc. Phys. Math. Soc. (Japan, series 3), 12, 247–250. October 1930.
Google Scholar
V.P. Ponomarenko and A.M. Filachev, Infrared Techniques and Electro-Optics in Russia: A History 1946–2006, SPIE Press, Bellingham, 2007.
Google Scholar
E. W. Kutzscher, “Review on detectors of infrared radiation,” Electro-Opt. Syst. Design
5, 30 (June 1973).
Google Scholar
W.N. Arnquist, “Survey of early infrared developments,” Proc. IRE 47 1420–1430 (1959).
Article
Google Scholar
R.J. Cushman, “Film-type infrared photoconductors,” Proc. IRE
47, 1471–1475 (1959).
Article
Google Scholar
D.J. Lovell, “Cashman thallous sulfide cell,” Appl. Opt.
10, 1003–1008 (1971).
ADS
Article
Google Scholar
D.J. Lovell, “The development of lead salt detectors,” Amer. J. Phys.
37, 467–478 (1969).
ADS
Article
Google Scholar
M. Judt and B. Ciesla, Technology Transfer out of Germany after 1945, Routledge Studies in the History of Science, Technology and Medicine, Overseas Publishers Association, Amsterdam, 1996.
Google Scholar
P.R. Norton, “Infrared detectors in the next millennium,” Proc. SPIE
3698, 652–665 (1999)
ADS
Article
Google Scholar
A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2010.
Book
Google Scholar
R.C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” Proc. IRE
47, 1495–1502 (1959).
Article
Google Scholar
P.W. Kruse, Uncooled Thermal Imaging, SPIE Press, Bellingham, 2001.
Book
Google Scholar
P. Norton, “Third-generation sensors for night vision,” Opto- -Electron. Rev.
14, 1–10 (2006).
ADS
Article
Google Scholar
http://www.nvl.army.mil/history.html
“Sidewinder article”, http://wiki.scramble.nl/index.php-title =Sidewinder_article
http://ookaboo.com/o/pictures/picture/21952750/Prototype _Sidewinder1_missile_on_an_AD4_
B.V. Rollin and E.L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures,” Proc. Phys. Soc.
B65, 995–996 (1952).
ADS
Google Scholar
E. Burstein, J.J. Oberly, and J.W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon,” Phys. Rev.
89(1), 331–332 (1953).
ADS
Article
Google Scholar
E. Burstein, G. Pines and N. Sclar, “Optical and photoconductive properties of silicon and germanium,” in Photoconductivity Conference at Atlantic City, edited by R. Breckenbridge, B. Russell and E. Hahn, pp. 353–413, Wiley, New York, 1956.
Google Scholar
S. Borrello and H. Levinstein, “Preparation and properties of mercury moped germanium,” J. Appl. Phys.
33, 2947–2950 (1962).
ADS
Article
Google Scholar
R. A. Soref, “Extrinsic IR potoconductivity of Si dped with B, Al, Ga, P, As or Sb,” J. Appl. Phys.
38, 5201–5209 (1967).
ADS
Article
Google Scholar
W.S. Boyle and G.E. Smith, “Charge-coupled semiconductor devices,” Bell Syst. Tech. J.
49, 587–593 (1970).
Google Scholar
F. Shepherd and A. Yang, “Silicon Schottky retinas for infrared imaging,” IEDM Tech. Dig., 310–313 (1973).
W.D. Lawson, S. Nielson, E.H. Putley, and A.S. Young, “Preparation and properties of HgTe and mixed crystals of HgTe-CdTe,” J. Phys. Chem. Solids
9, 325–329 (1959).
ADS
Article
Google Scholar
T. Elliot, “Recollections of MCT work in the UK at Malvern and Southampton,” Proc. SPIE 7298, 72982M (2009).
ADS
Article
Google Scholar
P.W. Kruse, M.D. Blue, J.H. Garfunkel, and W.D. Saur, “Long wavelength photoeffects in mercury selenide, mercury telluride and mercury telluride-cadmium telluride,” Infrared Phys.
2, 53–60, 1962.
ADS
Article
Google Scholar
J. Melngailis and T. C. Harman, “Single-crystal lead-tin chalcogenides,” in Semiconductors and Semimetals, Vol 5, pp. 111–174, edited by R. K. Willardson and A. C. Beer, Academic Press, New York, 1970.
Google Scholar
T.C. Harman and J. Melngailis, “Narrow gap semiconductors,” in Applied Solid State Science, Vol. 4, pp. 1–94, edited by R. Wolfe, Academic Press, New York, 1974.
R. Dornhaus, G. Nimtz, and B. Schlicht, Narrow Gap Semiconductors, Springer, Berlin, 1983.
Google Scholar
J. Baars, “New aspects of the material and device technology of intrinsic infrared photodetectors,” in Physics and Narrow Gap Semiconductors, pp. 280–282, edited by E. Gornik, H. Heinrich and L. Palmetshofer, Springer, Berlin (1982).
Google Scholar
J.T. Longo, D.T. Cheung, A.M. Andrews, C.C. Wang, and J.M. Tracy, “Infrared focal planes in intrinsic semiconductors,” IEEE Trans. Electr. Dev.
ED-25, 213–232 (1978).
ADS
Article
Google Scholar
D. Long and J.L. Schmit, “Mercury-cadmium telluride and closely related alloys,” in Semiconductors and Semimetals, Vol. 5, pp. 175–255, edited by R. K. Willardson and A. C. Beer, Academic Press, New York (1970).
Google Scholar
P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev.
10, 159–174 (2002).
Google Scholar
C. Verie and R. Granger, “Propriétés de junctions p-n d’alliages CdxHg1−xTe,” C. T. Acad. Sc.
261, 3349–3352 (1965).
Google Scholar
G.C. Verie and M. Sirieix, “Gigahertz cutoff frequency capabilities of CdHgTe photovoltaic detectors at 10.6 μm,” IEEE J. Quant. Electr.
8, 180–184 (1972).
ADS
Article
Google Scholar
B.E. Bartlett, D.E. Charlton, W.E. Dunn, P.C. Ellen, M.D. Jenner, and M.H. Jervis, “Background limited photoconductive detectors for use in the 8–14 micron atmospheric window,” Infrared Phys.
9, 35–36 (1969).
ADS
Article
Google Scholar
M.A. Kinch, S.R. Borrello, and A. Simmons, “0.1 eV HgCdTe photoconductive detector performance,” Infrared Phys.
17, 127–135 (1977).
ADS
Article
Google Scholar
M.A. Kinch, “Fifty years of HgCdTe at Texas Instruments and beyond,” Proc. SPIE
7298, 72982T (2009).
C.T. Elliott, D. Day, and B.J. Wilson, “An integrating detector for serial scan thermal imaging,” Infrared Physics
22, 31–42 (1982).
ADS
Article
Google Scholar
A. Blackburn, M.V. Blackman, D.E. Charlton, W.A.E. Dunn, M.D. Jenner, K.J. Oliver, and J.T.M. Wotherspoon, ”The practical realization and performance of SPRITE detectors,” Infrared Phys.
22, 57–64 (1982).
ADS
Article
Google Scholar
D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys.
62, 2545–2548 (1987).
ADS
Article
Google Scholar
B.F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys.
74, R1–R81 (1993).
ADS
Article
Google Scholar
A. Rogalski, “Quantum well photoconductors in infrared detectors technology,” J. Appl. Phys.
93, 4355–4391 (2003).
ADS
Article
Google Scholar
H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors, Springer, Berlin, 2007.
Google Scholar
M. Zandian, J.D. Garnett, R.E. DeWames, M. Carmody, J.G. Pasko, M. Farris, C.A. Cabelli, D.E. Cooper, G. Hildebrandt, J. Chow, J.M. Arias, K. Vural, and D.N.B. Hall, “Mid-wavelength infrared p-on-on Hg1−xCdxTe heterostructure detectors: 30–120 Kelvin state-of-the-art performance,” J. Electron. Mater.
32, 803–809 (2003).
ADS
Article
Google Scholar
A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater.
28, 630–636 (1999).
ADS
Article
Google Scholar
M.Z. Tidrow, W.A. Beck, W.W. Clark, H.K. Pollehn, J.W. Little, N.K. Dhar, P.R. Leavitt, S.W. Kennerly, D.W. Beekman, A.C. Goldberg, and W.R. Dyer, “Device physics and focal plane applications of QWIP and MCT,” Opto-Electron. Rev.
7, 283–296 (1999).
Google Scholar
Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering,” Phys. Rev.
B69, 085316 (2004).
ADS
Google Scholar
A. Rogalski, “Hg-based alternatives to MCT,” in Infrared Detectors and Emitters: Materials and Devices, pp. 377–400, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001.
Chapter
Google Scholar
M.J. E. Golay, “A pneumatic infrared detector,” Rev. Sci. Instr.
18, 357–362 (1947).
ADS
Article
Google Scholar
E.M. Wormser, “Properties of thermistor infrared detectors,” J. Opt. Soc. Amer.
43, 15–21 (1953).
ADS
Article
Google Scholar
R. W. Astheimer, “Thermistor infrared detectors,” Proc. SPIE
443, 95–109 (1983).
ADS
Google Scholar
G.W. McDaniel and D.Z. Robinson, “Thermal imaging by means of the evaporograph,” Appl. Opt.
1, 311–324 (1962).
ADS
Article
Google Scholar
C. Hilsum and W.R. Harding, “The theory of thermal imaging, and its application to the absorption-edge image tube,” Infrared Phys.
1, 67–93 (1961).
ADS
Article
Google Scholar
A.J. Goss, “The pyroelectric vidicon — A review,” Proc. SPIE
807, 25–32 (1987).
ADS
Google Scholar
R. A. Wood and N. A. Foss, “Micromachined bolometer arrays achieve low-cost imaging,” Laser Focus World, 101–106 (June, 1993).
http://www.flir.com/uploadedFiles/Eurasia/Cores_and_Components/Technical_Notes/uncooled%20detectors%20BST.pdf
T. Schimert, C. Hanson, J. Brady, T. Fagan, M. Taylor, W. McCardel, R. Gooch, M. Gohlke, and A.J. Syllaios, “Advances in small pixel, large format a-Si bolometer arrays,” Proc. SPIE
7298, 72980T-1–5 (2009).
Google Scholar
JJ. Yon, JP. Nieto, L. Vandroux, P. Imperinetti, E. Rolland, V. Goudon, C. Vialle, and A. Arnaud, ”Low resistance α-SiGe based microbolometer pixel for future smart IR FPA,” Proc. SPIE
7660, 76600U-1–7 (2010).
Google Scholar
C. Hanson, “IR detectors: amorphous-silicon bolometers could surpass IR focal-plane technologies,” Laser Focus Word, April 1, 2011.
N. Roxhed, F. Niklaus, A.C. Fischer, F. Forsberg, L. Höglund, P. Ericsson, B. Samel, S. Wissmar, A. Elfvingc, T.I. Simonsen, K. Wang, and N. Hoivik, “Low-cost uncooled microbolometers for thermal imaging,” Proc. SPIE
7726, 772611-1–10 (2010).
Google Scholar
Seeing Photons: Progress and Limits of Visible and Infared Sensor Arrays, Committee on Developments in Detector Technologies; National Research Council, 2010, http://www.nap.edu/catalog/12896.html
P. Norton, “Detector focal plane array technology”, in Encyclopedia of Optical Engineering, edited by R. Driggers, pp. 320–348, Marcel Dekker Inc., New York, 2003.
Google Scholar
R. Thom, “High density infrared detector arrays,” U.S. Patent No. 4,039,833 (1977).
A.S. Gilmore, “High-definition infrared FPAs,” Raytheon Technology Today, issue 1 (2008).
G. Destefanis, P. Tribolet, M. Vuillermet, and D.B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE
8012, 801235-1–12 (2011)
Google Scholar
A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays,” Laser Focus World, 81–84, February 2006.
J.W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E.C. Piquette, T. Sprafke, W.E. Tennant, M. Zandian, and J. Zino, “Teledyne Imaging Sensors: Infrared imaging technologies for astronomy & civil space,” Proc. SPIE
7021, 70210H (2008).
ADS
Article
Google Scholar
A.M. Fowler, D. Bass, J. Heynssens, I. Gatley, F.J. Vrba, H.D. Ables, A. Hoffman, M. Smith, and J. Woolaway, “Next generation in InSb arrays: ALADDIN, the 1024×1024 InSb focal plane array readout evaluation results,” Proc. SPIE
2268, 340–345 (1994).
ADS
Article
Google Scholar
E. Beuville, D. Acton, E. Corrales, J. Drab, A. Levy, M. Merrill, R. Peralta, and W. Ritchie, “High performance large infrared and visible astronomy arrays for low background applications: Instruments performance data and future developments at Raytheon,” Proc. SPIE
6660, 66600B (2007).
Article
Google Scholar
A.W. Hoffman, E. Corrales, P.J. Love, and J. Rosbeck, M. Merrill, A. Fowler, and C. McMurtry, “2K×2K InSb for astronomy,” Proc. SPIE
5499, 59–67 (2004).
ADS
Article
Google Scholar
M.E. Ressler, H. Cho, R.A.M. Lee, K.G. Sukhatme, J.J. Drab, G. Domingo, M.E. McKelvey, R.E. McMurray, Jr., and J.L. Dotson, “Performance of the JWST/MIRI Si:As detectors,” Proc. SPIE
7021, 70210O (2008).
ADS
Article
Google Scholar
A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.
105, 091101 (2009).
ADS
Article
Google Scholar
D.F. King, J.S. Graham, A.M. Kennedy, R.N. Mullins, J.C. McQuitty, W.A. Radford, T.J. Kostrzewa, E.A. Patten, T.F. Mc Ewan, J.G. Vodicka, and J.J. Wootana, “3rd-generation MW/LWIR sensor engine for advanced tactical systems,” Proc.
6940, 69402R (2008).
Google Scholar
S. Gunapala, S.V. Bandara, J.K. Liu, J.M. Mumolo, D.Z. Ting, C.J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S.C. Wang, W. Li, P.D. LeVan, and M.Z. Tidrow, “Demonstration of megapixel dual-band QWIP focal plane array,” IEEE J. Quantum. Electron.
46, 285–293 (2010).
ADS
Article
Google Scholar
S.D. Gunapala, S.V. Bandara, J.K. Liu, E.M. Luong, S.B. Rafol, J.M. Mumolo, D.Z. Ting, J.J. Bock, M.E. Ressler, M.W. Werner, P.D. LeVan, R. Chehayeb, C.A. Kukkonen, M. Ley, P. LeVan, and M.A. Fauci, “Recent developments and applications of quantum well infrared photodetector focal plane arrays,” Opto-Electron. Rev.
8, 150–163 (2001).
Google Scholar
A. Rogalski, “New material systems for third generation infrared photodetectors,” Opto-Electron. Rev.
16, 458–482 (2008).
ADS
Article
Google Scholar
R. Rehm, M. Walther, J. Schmitz, F. Rutz, A. Worl, R. Scheibner, and J. Ziegler, “Type-II superlattices: the Fraunhofer perspective,” Proc. SPIE
7660, 76601G-1–12 (2010).
“Uncooled infrared imaging market commercial & military applications,” Market & Technology Report — available in JULY 2011, Yole Development.
http://www.sofradir-ec.com/wp-uncooled-detectors-achieve.asp
S.H. Black, T. Sessler, E. Gordon, R. Kraft, T Kocian, M. Lamb, R. Williams, and T. Yang, “Uncooled detector development at Raytheon,” Proc. SPIE
8012, 80121A-1–12 (2011).
Google Scholar
P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: Status and outlook,” Prog. Quantum Electron.
32, 89–120 (2008).
ADS
Article
Google Scholar