History of infrared detectors


This paper overviews the history of infrared detector materials starting with Herschel’s experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940’s. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ∼3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called “dual-use technology applications.” One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

This is a preview of subscription content, access via your institution.


  1. 1.

    W. Herschel, “Experiments on the refrangibility of the invisible rays of the Sun,” Phil. Trans. Roy. Soc. London 90, 284–292 (1800).

    Google Scholar 

  2. 2.

    http://coolcosmos.ipac.caltech.edu/sitemap.html#cosmicclas sroom

  3. 3.

    E.S. Barr, “Historical survey of the early development of the infrared spectral region,” Amer. J. Phys. 28, 42–54 (1960).

    ADS  Article  Google Scholar 

  4. 4.

    E.S. Barr, “The infrared pioneers — I. Sir William Herschel,” Infrared Phys. 1, 1 (1961).

    ADS  Article  Google Scholar 

  5. 5.

    R.A. Smith, F.E. Jones, and R.P. Chasmar, The Detection and Measurement of Infrared Radiation, Clarendon, Oxford, 1958.

    Google Scholar 

  6. 6.

    P.W. Kruse, L.D. McGlauchlin and R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962.

    Google Scholar 

  7. 7.

    R.D. Hudson, Infrared System Engineering, Wiley-Interscience, New Jersey, 1969.

    Google Scholar 

  8. 8.

    E.S. Barr, “The infrared pioneers — II. Macedonio Melloni,” Infrared Phys. 2, 67–73 (1962).

    ADS  Article  Google Scholar 

  9. 9.

    E.S. Barr, “The Infrared Pioneers — III. Samuel Pierpont Langley,” Infrared Phys. 3, 195–206 (1963).

    ADS  Article  Google Scholar 

  10. 10.

    L.M. Biberman and R.L. Sendall, “Chapter 1. Introduction: A brief history of imaging devices for night vision,” in Electro-Optical Imaging: System Performance and Modeling, edited by L.M. Biberman, pp. 1-1–1-26, SPIE Press, Bellingham, 2000.

    Google Scholar 

  11. 11.

    J. Caniou, Passive Infrared Detection: Theory and Application, Kluwer Academic Publishers, Dordrecht, 1999

    Google Scholar 

  12. 12.

    K. Herrmann and L. Walther, Wissensspeicher Infrarottechnik (Store of Knowledge in Infrared Technology), Fachbuchverlag, Leipzig, 1990.

    Google Scholar 

  13. 13.

    T.J. Seebeck, “Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz,” Abh. Deutsch. Akad. Wiss. Berlin, 265–373 (1822).

  14. 14.


  15. 15.


  16. 16.

    S.P. Langley, “The bolometer and radiant energy,” Proc. Am. Academy of Arts and Sciences 16, 342–358 (May 1880–Jun. 1881).

  17. 17.

    C.D. Walcott, Samuel Pierpont Langley, City of Washington, The National Academy of Science, April, 1912.

    Google Scholar 

  18. 18.

    W. Smith, “Effect of light on selenium during the passage of an electric current,” Nature 7, 303 (1873).

    Google Scholar 

  19. 19.

    M. F. Doty, Selenium, List of References, 1917–1925, New York Public Library, New York, 1927.

    Google Scholar 

  20. 20.

    Applied Optics (November, 1963), commemorative issue with extensive material on Coblentz’s scientific work

  21. 21.

    W.F. Meggers, William Weber Coblentz.1873–196, National Academy of Science, Washingthon, 1967.

    Google Scholar 

  22. 22.

    H. Hertz, “Ueber den Einfluss des ultravioletten Lichtes auf die electrische Entladung,” Annalen der Physik 267(8) 983–1000 (1887).

    ADS  Article  Google Scholar 

  23. 23.

    J. Elster, H. Geitel, “Ueber die Entladung negativ electrischer Korper durch das Sonnen- und Tageslicht,” Ann. Physik 497–514 (1889).

  24. 24.

    F. Braun, “Uber die Stromleitung durch Schwefelmetalic,” Annalen der Physik and Chemie 153(4), 556–563 (1874).

    Google Scholar 

  25. 25.

    J. C. Bose, “Detector for electrical disturbances,” U. S. Patent 755,840 (Filed September 30, 1901. Issued March 29, 1904).

  26. 26.

    T.W. Case, “Notes on the change of resistance of certain substrates in light,” Phys. Rev. 9, 305–310 (1917).

    ADS  Article  Google Scholar 

  27. 27.

    S.F. Johnson, A History of Light and Colour Measurement. Science in the Shadows, IOP Publishing Ltd, Bristol, 2001.

    Google Scholar 

  28. 28.

    T.W. Case, “The thalofide cell — a new photoelectric substance,” Phys. Rev. 15, 289 (1920).

    ADS  Article  Google Scholar 

  29. 29.

    G. Holst, J.H. de Boer, M.C. Teves, and C.F. Veenemans, “Foto-electrische cel en inrichting waarmede uit een primair, door directe lichtstralen gevormd beeld een geheel ofnagenoeg geheel conform secundair optisch beeld kan,” Dutch Patent 27062 (1928), British Patent 326200; D.R.P. 535208; “An apparatus for the transformation of light of long wavelength into light of short wavelength,” Physica 1, 297–305 (1934).

  30. 30.

    L. Koller, “Photoelectric emission from thin films of caesium,” Phys. Rev. 36, 1639–1647 (1930); N.R. Campbell, ”Photoelectric emission of thin films,” Phil. Mag. 12, 173–185(1931).

    ADS  Article  Google Scholar 

  31. 31.

    A.M. Glover, “A review of the development of sensitive phototubes,” Proc. IRE, 413–423, August 1941.

  32. 32.

    S. Asao and M. Suzuki, “Improvement of thin film caesium photoelectric tube,” Proc. Phys. Math. Soc. (Japan, series 3), 12, 247–250. October 1930.

    Google Scholar 

  33. 33.

    V.P. Ponomarenko and A.M. Filachev, Infrared Techniques and Electro-Optics in Russia: A History 1946–2006, SPIE Press, Bellingham, 2007.

    Google Scholar 

  34. 34.

    E. W. Kutzscher, “Review on detectors of infrared radiation,” Electro-Opt. Syst. Design 5, 30 (June 1973).

    Google Scholar 

  35. 35.

    W.N. Arnquist, “Survey of early infrared developments,” Proc. IRE 47 1420–1430 (1959).

    Article  Google Scholar 

  36. 36.

    R.J. Cushman, “Film-type infrared photoconductors,” Proc. IRE 47, 1471–1475 (1959).

    Article  Google Scholar 

  37. 37.

    D.J. Lovell, “Cashman thallous sulfide cell,” Appl. Opt. 10, 1003–1008 (1971).

    ADS  Article  Google Scholar 

  38. 38.

    D.J. Lovell, “The development of lead salt detectors,” Amer. J. Phys. 37, 467–478 (1969).

    ADS  Article  Google Scholar 

  39. 39.

    M. Judt and B. Ciesla, Technology Transfer out of Germany after 1945, Routledge Studies in the History of Science, Technology and Medicine, Overseas Publishers Association, Amsterdam, 1996.

    Google Scholar 

  40. 40.

    P.R. Norton, “Infrared detectors in the next millennium,” Proc. SPIE 3698, 652–665 (1999)

    ADS  Article  Google Scholar 

  41. 41.

    A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2010.

    Google Scholar 

  42. 42.

    R.C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” Proc. IRE 47, 1495–1502 (1959).

    Article  Google Scholar 

  43. 43.

    P.W. Kruse, Uncooled Thermal Imaging, SPIE Press, Bellingham, 2001.

    Google Scholar 

  44. 44.

    P. Norton, “Third-generation sensors for night vision,” Opto- -Electron. Rev. 14, 1–10 (2006).

    ADS  Article  Google Scholar 

  45. 45.


  46. 46.

    “Sidewinder article”, http://wiki.scramble.nl/index.php-title =Sidewinder_article

  47. 47.

    http://ookaboo.com/o/pictures/picture/21952750/Prototype _Sidewinder1_missile_on_an_AD4_

  48. 48.

    B.V. Rollin and E.L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures,” Proc. Phys. Soc. B65, 995–996 (1952).

    ADS  Google Scholar 

  49. 49.

    E. Burstein, J.J. Oberly, and J.W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon,” Phys. Rev. 89(1), 331–332 (1953).

    ADS  Article  Google Scholar 

  50. 50.

    E. Burstein, G. Pines and N. Sclar, “Optical and photoconductive properties of silicon and germanium,” in Photoconductivity Conference at Atlantic City, edited by R. Breckenbridge, B. Russell and E. Hahn, pp. 353–413, Wiley, New York, 1956.

    Google Scholar 

  51. 51.

    S. Borrello and H. Levinstein, “Preparation and properties of mercury moped germanium,” J. Appl. Phys. 33, 2947–2950 (1962).

    ADS  Article  Google Scholar 

  52. 52.

    R. A. Soref, “Extrinsic IR potoconductivity of Si dped with B, Al, Ga, P, As or Sb,” J. Appl. Phys. 38, 5201–5209 (1967).

    ADS  Article  Google Scholar 

  53. 53.

    W.S. Boyle and G.E. Smith, “Charge-coupled semiconductor devices,” Bell Syst. Tech. J. 49, 587–593 (1970).

    Google Scholar 

  54. 54.

    F. Shepherd and A. Yang, “Silicon Schottky retinas for infrared imaging,” IEDM Tech. Dig., 310–313 (1973).

  55. 55.

    W.D. Lawson, S. Nielson, E.H. Putley, and A.S. Young, “Preparation and properties of HgTe and mixed crystals of HgTe-CdTe,” J. Phys. Chem. Solids 9, 325–329 (1959).

    ADS  Article  Google Scholar 

  56. 56.

    T. Elliot, “Recollections of MCT work in the UK at Malvern and Southampton,” Proc. SPIE 7298, 72982M (2009).

    ADS  Article  Google Scholar 

  57. 57.

    P.W. Kruse, M.D. Blue, J.H. Garfunkel, and W.D. Saur, “Long wavelength photoeffects in mercury selenide, mercury telluride and mercury telluride-cadmium telluride,” Infrared Phys. 2, 53–60, 1962.

    ADS  Article  Google Scholar 

  58. 58.

    J. Melngailis and T. C. Harman, “Single-crystal lead-tin chalcogenides,” in Semiconductors and Semimetals, Vol 5, pp. 111–174, edited by R. K. Willardson and A. C. Beer, Academic Press, New York, 1970.

    Google Scholar 

  59. 59.

    T.C. Harman and J. Melngailis, “Narrow gap semiconductors,” in Applied Solid State Science, Vol. 4, pp. 1–94, edited by R. Wolfe, Academic Press, New York, 1974.

  60. 60.

    R. Dornhaus, G. Nimtz, and B. Schlicht, Narrow Gap Semiconductors, Springer, Berlin, 1983.

    Google Scholar 

  61. 61.

    J. Baars, “New aspects of the material and device technology of intrinsic infrared photodetectors,” in Physics and Narrow Gap Semiconductors, pp. 280–282, edited by E. Gornik, H. Heinrich and L. Palmetshofer, Springer, Berlin (1982).

    Google Scholar 

  62. 62.

    J.T. Longo, D.T. Cheung, A.M. Andrews, C.C. Wang, and J.M. Tracy, “Infrared focal planes in intrinsic semiconductors,” IEEE Trans. Electr. Dev. ED-25, 213–232 (1978).

    ADS  Article  Google Scholar 

  63. 63.

    D. Long and J.L. Schmit, “Mercury-cadmium telluride and closely related alloys,” in Semiconductors and Semimetals, Vol. 5, pp. 175–255, edited by R. K. Willardson and A. C. Beer, Academic Press, New York (1970).

    Google Scholar 

  64. 64.

    P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).

    Google Scholar 

  65. 65.

    C. Verie and R. Granger, “Propriétés de junctions p-n d’alliages CdxHg1−xTe,” C. T. Acad. Sc. 261, 3349–3352 (1965).

    Google Scholar 

  66. 66.

    G.C. Verie and M. Sirieix, “Gigahertz cutoff frequency capabilities of CdHgTe photovoltaic detectors at 10.6 μm,” IEEE J. Quant. Electr. 8, 180–184 (1972).

    ADS  Article  Google Scholar 

  67. 67.

    B.E. Bartlett, D.E. Charlton, W.E. Dunn, P.C. Ellen, M.D. Jenner, and M.H. Jervis, “Background limited photoconductive detectors for use in the 8–14 micron atmospheric window,” Infrared Phys. 9, 35–36 (1969).

    ADS  Article  Google Scholar 

  68. 68.

    M.A. Kinch, S.R. Borrello, and A. Simmons, “0.1 eV HgCdTe photoconductive detector performance,” Infrared Phys. 17, 127–135 (1977).

    ADS  Article  Google Scholar 

  69. 69.

    M.A. Kinch, “Fifty years of HgCdTe at Texas Instruments and beyond,” Proc. SPIE 7298, 72982T (2009).

  70. 70.

    C.T. Elliott, D. Day, and B.J. Wilson, “An integrating detector for serial scan thermal imaging,” Infrared Physics 22, 31–42 (1982).

    ADS  Article  Google Scholar 

  71. 71.

    A. Blackburn, M.V. Blackman, D.E. Charlton, W.A.E. Dunn, M.D. Jenner, K.J. Oliver, and J.T.M. Wotherspoon, ”The practical realization and performance of SPRITE detectors,” Infrared Phys. 22, 57–64 (1982).

    ADS  Article  Google Scholar 

  72. 72.

    D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys. 62, 2545–2548 (1987).

    ADS  Article  Google Scholar 

  73. 73.

    B.F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993).

    ADS  Article  Google Scholar 

  74. 74.

    A. Rogalski, “Quantum well photoconductors in infrared detectors technology,” J. Appl. Phys. 93, 4355–4391 (2003).

    ADS  Article  Google Scholar 

  75. 75.

    H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors, Springer, Berlin, 2007.

    Google Scholar 

  76. 76.

    M. Zandian, J.D. Garnett, R.E. DeWames, M. Carmody, J.G. Pasko, M. Farris, C.A. Cabelli, D.E. Cooper, G. Hildebrandt, J. Chow, J.M. Arias, K. Vural, and D.N.B. Hall, “Mid-wavelength infrared p-on-on Hg1−xCdxTe heterostructure detectors: 30–120 Kelvin state-of-the-art performance,” J. Electron. Mater. 32, 803–809 (2003).

    ADS  Article  Google Scholar 

  77. 77.

    A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater. 28, 630–636 (1999).

    ADS  Article  Google Scholar 

  78. 78.

    M.Z. Tidrow, W.A. Beck, W.W. Clark, H.K. Pollehn, J.W. Little, N.K. Dhar, P.R. Leavitt, S.W. Kennerly, D.W. Beekman, A.C. Goldberg, and W.R. Dyer, “Device physics and focal plane applications of QWIP and MCT,” Opto-Electron. Rev. 7, 283–296 (1999).

    Google Scholar 

  79. 79.

    Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering,” Phys. Rev. B69, 085316 (2004).

    ADS  Google Scholar 

  80. 80.

    A. Rogalski, “Hg-based alternatives to MCT,” in Infrared Detectors and Emitters: Materials and Devices, pp. 377–400, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001.

    Google Scholar 

  81. 81.

    M.J. E. Golay, “A pneumatic infrared detector,” Rev. Sci. Instr. 18, 357–362 (1947).

    ADS  Article  Google Scholar 

  82. 82.

    E.M. Wormser, “Properties of thermistor infrared detectors,” J. Opt. Soc. Amer. 43, 15–21 (1953).

    ADS  Article  Google Scholar 

  83. 83.

    R. W. Astheimer, “Thermistor infrared detectors,” Proc. SPIE 443, 95–109 (1983).

    ADS  Google Scholar 

  84. 84.

    G.W. McDaniel and D.Z. Robinson, “Thermal imaging by means of the evaporograph,” Appl. Opt. 1, 311–324 (1962).

    ADS  Article  Google Scholar 

  85. 85.

    C. Hilsum and W.R. Harding, “The theory of thermal imaging, and its application to the absorption-edge image tube,” Infrared Phys. 1, 67–93 (1961).

    ADS  Article  Google Scholar 

  86. 86.

    A.J. Goss, “The pyroelectric vidicon — A review,” Proc. SPIE 807, 25–32 (1987).

    ADS  Google Scholar 

  87. 87.

    R. A. Wood and N. A. Foss, “Micromachined bolometer arrays achieve low-cost imaging,” Laser Focus World, 101–106 (June, 1993).

  88. 88.


  89. 89.

    T. Schimert, C. Hanson, J. Brady, T. Fagan, M. Taylor, W. McCardel, R. Gooch, M. Gohlke, and A.J. Syllaios, “Advances in small pixel, large format a-Si bolometer arrays,” Proc. SPIE 7298, 72980T-1–5 (2009).

    Google Scholar 

  90. 90.

    JJ. Yon, JP. Nieto, L. Vandroux, P. Imperinetti, E. Rolland, V. Goudon, C. Vialle, and A. Arnaud, ”Low resistance α-SiGe based microbolometer pixel for future smart IR FPA,” Proc. SPIE 7660, 76600U-1–7 (2010).

    Google Scholar 

  91. 91.

    C. Hanson, “IR detectors: amorphous-silicon bolometers could surpass IR focal-plane technologies,” Laser Focus Word, April 1, 2011.

  92. 92.

    N. Roxhed, F. Niklaus, A.C. Fischer, F. Forsberg, L. Höglund, P. Ericsson, B. Samel, S. Wissmar, A. Elfvingc, T.I. Simonsen, K. Wang, and N. Hoivik, “Low-cost uncooled microbolometers for thermal imaging,” Proc. SPIE 7726, 772611-1–10 (2010).

    Google Scholar 

  93. 93.

    Seeing Photons: Progress and Limits of Visible and Infared Sensor Arrays, Committee on Developments in Detector Technologies; National Research Council, 2010, http://www.nap.edu/catalog/12896.html

  94. 94.

    P. Norton, “Detector focal plane array technology”, in Encyclopedia of Optical Engineering, edited by R. Driggers, pp. 320–348, Marcel Dekker Inc., New York, 2003.

    Google Scholar 

  95. 95.

    R. Thom, “High density infrared detector arrays,” U.S. Patent No. 4,039,833 (1977).

  96. 96.

    A.S. Gilmore, “High-definition infrared FPAs,” Raytheon Technology Today, issue 1 (2008).

  97. 97.

    G. Destefanis, P. Tribolet, M. Vuillermet, and D.B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235-1–12 (2011)

    Google Scholar 

  98. 98.

    A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays,” Laser Focus World, 81–84, February 2006.

  99. 99.

    J.W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E.C. Piquette, T. Sprafke, W.E. Tennant, M. Zandian, and J. Zino, “Teledyne Imaging Sensors: Infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008).

    ADS  Article  Google Scholar 

  100. 100.

    A.M. Fowler, D. Bass, J. Heynssens, I. Gatley, F.J. Vrba, H.D. Ables, A. Hoffman, M. Smith, and J. Woolaway, “Next generation in InSb arrays: ALADDIN, the 1024×1024 InSb focal plane array readout evaluation results,” Proc. SPIE 2268, 340–345 (1994).

    ADS  Article  Google Scholar 

  101. 101.

    E. Beuville, D. Acton, E. Corrales, J. Drab, A. Levy, M. Merrill, R. Peralta, and W. Ritchie, “High performance large infrared and visible astronomy arrays for low background applications: Instruments performance data and future developments at Raytheon,” Proc. SPIE 6660, 66600B (2007).

    Article  Google Scholar 

  102. 102.

    A.W. Hoffman, E. Corrales, P.J. Love, and J. Rosbeck, M. Merrill, A. Fowler, and C. McMurtry, “2K×2K InSb for astronomy,” Proc. SPIE 5499, 59–67 (2004).

    ADS  Article  Google Scholar 

  103. 103.

    M.E. Ressler, H. Cho, R.A.M. Lee, K.G. Sukhatme, J.J. Drab, G. Domingo, M.E. McKelvey, R.E. McMurray, Jr., and J.L. Dotson, “Performance of the JWST/MIRI Si:As detectors,” Proc. SPIE 7021, 70210O (2008).

    ADS  Article  Google Scholar 

  104. 104.

    A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009).

    ADS  Article  Google Scholar 

  105. 105.

    D.F. King, J.S. Graham, A.M. Kennedy, R.N. Mullins, J.C. McQuitty, W.A. Radford, T.J. Kostrzewa, E.A. Patten, T.F. Mc Ewan, J.G. Vodicka, and J.J. Wootana, “3rd-generation MW/LWIR sensor engine for advanced tactical systems,” Proc. 6940, 69402R (2008).

    Google Scholar 

  106. 106.

    S. Gunapala, S.V. Bandara, J.K. Liu, J.M. Mumolo, D.Z. Ting, C.J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S.C. Wang, W. Li, P.D. LeVan, and M.Z. Tidrow, “Demonstration of megapixel dual-band QWIP focal plane array,” IEEE J. Quantum. Electron. 46, 285–293 (2010).

    ADS  Article  Google Scholar 

  107. 107.

    S.D. Gunapala, S.V. Bandara, J.K. Liu, E.M. Luong, S.B. Rafol, J.M. Mumolo, D.Z. Ting, J.J. Bock, M.E. Ressler, M.W. Werner, P.D. LeVan, R. Chehayeb, C.A. Kukkonen, M. Ley, P. LeVan, and M.A. Fauci, “Recent developments and applications of quantum well infrared photodetector focal plane arrays,” Opto-Electron. Rev. 8, 150–163 (2001).

    Google Scholar 

  108. 108.

    A. Rogalski, “New material systems for third generation infrared photodetectors,” Opto-Electron. Rev. 16, 458–482 (2008).

    ADS  Article  Google Scholar 

  109. 109.

    R. Rehm, M. Walther, J. Schmitz, F. Rutz, A. Worl, R. Scheibner, and J. Ziegler, “Type-II superlattices: the Fraunhofer perspective,” Proc. SPIE 7660, 76601G-1–12 (2010).

  110. 110.

    “Uncooled infrared imaging market commercial & military applications,” Market & Technology Report — available in JULY 2011, Yole Development.

  111. 111.


  112. 112.

    S.H. Black, T. Sessler, E. Gordon, R. Kraft, T Kocian, M. Lamb, R. Williams, and T. Yang, “Uncooled detector development at Raytheon,” Proc. SPIE 8012, 80121A-1–12 (2011).

    Google Scholar 

  113. 113.

    P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: Status and outlook,” Prog. Quantum Electron. 32, 89–120 (2008).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Rogalski.

About this article

Cite this article

Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 20, 279–308 (2012). https://doi.org/10.2478/s11772-012-0037-7

Download citation


  • thermal and photon detectors
  • lead salt detectors
  • HgCdTe detectors
  • microbolometers
  • focal plane arrays